1887

Abstract

Twenty alkaliphilic bacterial strains from industrial applications or enzyme studies were subjected to a polyphasic taxonomic investigation, including 16S rRNA gene sequencing, determination of genomic DNA G+C content, DNA–DNA hybridization, fatty acid analysis and standard bacteriological characterization. By comparing the groupings obtained based on the genomic DNA G+C content and the construction of a phylogenetic tree based on the 16S rRNA gene sequence, 12 clusters of similar strains were recognized. DNA–DNA hybridization revealed that these clusters represented five novel genospecies. Further analysis supported the proposal of five novel species in the genus : sp. nov. (type strain N-1=JCM 9140=DSM 2521), sp. nov. (type strain C-11=JCM 9152=DSM 16731), sp. nov. (type strain N-4=JCM 9156=DSM 2522), sp. nov. (type strain 1139=JCM 9157=ATCC 43226) and sp. nov. (type strain AM-001=JCM 10596=DSM 16130).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63649-0
2005-11-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2309.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63649-0&mimeType=html&fmt=ahah

References

  1. Agnew, M. D., Koval, S. F. & Jarrell, K. F. ( 1995; ). Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18, 221–230.[CrossRef]
    [Google Scholar]
  2. Akino, T., Nakamura, N. & Horikoshi, K. ( 1987; ). Production of β-mannosidase and β-mannanase by an alkalophilic Bacillus sp. Appl Microbiol Biotechnol 26, 323–327.
    [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A. ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. New York: Cambridge University Press.
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Fukumori, F., Kudo, T. & Horikoshi, K. ( 1985; ). Purification and properties of a cellulase from alkalophilic Bacillus sp. no. 1139. J Gen Microbiol 131, 3339–3345.
    [Google Scholar]
  6. Hayashi, T., Akiba, T. & Horikoshi, K. ( 1988; ). Production and purification of new maltohexose-forming amylases from alkalophilic Bacillus sp. H-167. Agric Biol Chem 52, 443–448.[CrossRef]
    [Google Scholar]
  7. Horikoshi, K. ( 1971; ). Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus no. 221. Agric Biol Chem 36, 1407–1414.
    [Google Scholar]
  8. Horikoshi, K. ( 1999; ). Alkaliphiles. Tokyo: Kodansha.
  9. Horikoshi, K. & Akiba, T. ( 1982; ). Alkalophilic Microorganisms: a New Microbial World. Tokyo: Japan Scientific Societies Press.
  10. Horikoshi, K. & Atsukawa, Y. ( 1973; ). β-1,3-Glucanase produced by alkalophilic bacteria Bacillus No. K-12-5. Agric Biol Chem 37, 1449–1456.[CrossRef]
    [Google Scholar]
  11. Horikoshi, K. & Ikeda, Y. ( 1970; ). Manufacturing Method of Alkaline Protease. Japan patent no. 45–34535.
  12. Horikoshi, K., Ikeda, Y. & Nakao, M. ( 1971; ). Manufacturing Method of Cellulase. Japan patent no. 46–76685.
  13. Ikura, Y. & Horikoshi, K. ( 1977; ). Isolation and some properties of alkalophilic bacteria utilizing rayon waste. Agric Biol Chem 41, 1373–1377.[CrossRef]
    [Google Scholar]
  14. Ikura, Y. & Horikoshi, K. ( 1989; ). Manganese dependent production of 5′-nucleotidase by alkalophilic Bacillus no. C-3. J Ferment Bioeng 67, 111–114.[CrossRef]
    [Google Scholar]
  15. Kato, C., Li, L., Nogi, Y., Nakamura, Y., Tamaoka, J. & Horikoshi, K. ( 1998; ). Extremely barophilic bacteria isolated from the Mariana Trench, Challenger Deep, at a depth of 11,000 meters. Appl Environ Microbiol 64, 1510–1513.
    [Google Scholar]
  16. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  17. Kitada, M. & Horikoshi, K. ( 1976; ). Alkaline proteinase production from methyl acetate by alkalophilic Bacillus sp. J Ferment Technol 54, 383–392.
    [Google Scholar]
  18. Kitada, M., Wijayanti, L. & Horikoshi, K. ( 1987; ). Biochemical properties of a thermophilic alkalophile. Agric Biol Chem 51, 2429–2435.[CrossRef]
    [Google Scholar]
  19. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–207.
    [Google Scholar]
  20. Kudo, T. & Horikoshi, K. ( 1983; ). The effect of pH on heat-resistance of spores of alkalophilic Bacillus no. 2b-2. Agric Biol Chem 47, 403–404.[CrossRef]
    [Google Scholar]
  21. Kwon, H.-J., Kitada, M. & Horikoshi, K. ( 1987; ). Purification and properties of d-xylose isomerase from alkalophilic Bacillus no. KX-6. Agric Biol Chem 51, 1983–1989.[CrossRef]
    [Google Scholar]
  22. Li, Z., Kawamura, Y., Shida, O., Yamagata, S., Deguchi, T. & Ezaki, T. ( 2002; ). Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52, 1205–1209.[CrossRef]
    [Google Scholar]
  23. Nakamura, N., Watanabe, K. & Horikoshi, K. ( 1975; ). Purification and some properties of alkaline pullulanase from a strain of no. 202-1, an alkalophilic microorganism. Biochim Biophys Acta 397, 188–193.[CrossRef]
    [Google Scholar]
  24. Nielsen, P., Fritze, D. & Priest, F. G. ( 1995; ). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef]
    [Google Scholar]
  25. Saito, H. & Miura, K. ( 1963; ). Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72, 612–629.
    [Google Scholar]
  26. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Stackebrandt, E., Frederiksen, W., Garrity, G. M. & 10 other authors ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52, 1043–1047.[CrossRef]
    [Google Scholar]
  29. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  30. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  31. Tsumura, K., Hashimoto, Y., Akiba, T. & Horikoshi, K. ( 1991; ). Purification and properties of galactanases from alkalophilic Bacillus sp. S-2 and S-39. Agric Biol Chem 55, 1265–1271.[CrossRef]
    [Google Scholar]
  32. Vedder, A. ( 1934; ). Bacillus alcalophilus n. sp.; Benevens enkele Ervaringen met sterk alcalische Voedingsbodems. Antonie van Leeuwenhoek 1, 143–147 (in Dutch).
    [Google Scholar]
  33. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches of bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  34. Yamamoto, M., Tanaka, Y. & Horikoshi, K. ( 1972; ). Alkaline amylases of alkalophilic bacteria. Agric Biol Chem 36, 1819–1823.[CrossRef]
    [Google Scholar]
  35. Yoshida, A., Iwasaki, Y., Akiba, T. & Horikoshi, K. ( 1991; ). Purification and properties of cyclomaltodextrinase from alkalophilic Bacillus sp. J Ferment Bioeng 71, 226–229.[CrossRef]
    [Google Scholar]
  36. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H. ( 1998; ). Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef]
    [Google Scholar]
  37. Yumoto, I., Yamaga, S., Sogabe, Y., Nodasaka, Y., Matsuyama, H., Nakajima, K. & Suemori, A. ( 2003; ). Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m-hydroxybenzoate. Int J Syst Evol Microbiol 53, 1531–1536.[CrossRef]
    [Google Scholar]
  38. Yumoto, I., Hirota, K., Goto, T., Nodasaka, Y. & Nakajima, K. ( 2005; ). Bacillus oshimensis sp. nov., a moderately halophilic, non-motile alkaliphile. Int J Syst Evol Microbiol 55, 907–911.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63649-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63649-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2309 - 2315

Tables detailing the growth characters, the utilization of carbohydrate substrates and the fatty acid profiles of the five novel species. [PDF](210 KB)



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error