1887

Abstract

Strain ILE-2 was isolated from an upflow anaerobic sludge bed reactor treating brewery wastewater. The motile, non-sporulating, slightly curved cells (2–4×0.1 μm) stained Gram-negative and grew optimally at 42 °C and pH 7.1 with 0.5 % NaCl. The strain required yeast extract for growth and fermented Casamino acids, peptone, isoleucine, arginine, lysine, alanine, valine, glutamate, histidine, glutamine, methionine, malate, fumarate, glycerol and pyruvate to acetate, propionate and minor amounts of branched-chain fatty acids. Carbohydrates, formate, acetate, propionate, butyrate, isovalerate, methanol, ethanol, 1-propanol, butanol, lactate, succinate, starch, casein, gelatin, xylan and a number of other amino acids were not utilized. The DNA G+C content of strain ILE-2 was 52.7 mol%. 16S rRNA gene sequence analysis revealed that ILE-2 was distantly related to members of the genera (83 % similarity) and (85 % similarity) in the family , order , phylum . On the basis of the results of our polyphasic analysis, strain ILE-2 represents a novel species and genus within the family , for which the name gen. nov., sp. nov. is proposed. The type strain of is ILE-2 (=DSM 16581 =JCM 14039).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63614-0
2007-08-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/57/8/1914.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63614-0&mimeType=html&fmt=ahah

References

  1. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. ( 2001; ). Basic local alignment search tool. J Mol Biol 215, 403–410.
    [Google Scholar]
  2. Baena, S., Fardeau, M.-L., Labat, M., Ollivier, B., Thomas, P. & Patel, B. K. C. ( 1998; ). Aminobacterium colombiense gen. nov., sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe 4, 241–250.[CrossRef]
    [Google Scholar]
  3. Baena, S., Fardeau, M.-L., Woo, T. H. S., Ollivier, B., Labat, M. & Patel, B. K. C. ( 1999a; ). Phylogenetic relationships of three amino-acid-utilizing anaerobes, Selenomonas acidaminovorans, ‘Selenomonas acidaminophila’ and Eubacterium acidaminophilum, as inferred from partial 16S rDNA nucleotide sequences and proposal of Thermanaerovibrio acidaminovorans gen. nov., comb. nov. and Anaeromusa acidaminophila gen. nov., comb. nov. Int J Syst Bacteriol 49, 969–974.[CrossRef]
    [Google Scholar]
  4. Baena, S., Fardeau, M.-L., Ollivier, B., Labat, M., Thomas, P., Garcia, J.-L. & Patel, B. K. C. ( 1999b; ). Aminomonas paucivorans gen. nov., sp. nov., a mesophilic, anaerobic, amino-acid-utilizing bacterium. Int J Syst Bacteriol 49, 975–982.[CrossRef]
    [Google Scholar]
  5. Baena, S., Fardeau, M.-L., Labat, M., Ollivier, B., Garcia, J.-L. & Patel, B. K. C. ( 2000; ). Aminobacterium mobile sp. nov., a new anaerobic amino-acid-degrading bacterium. Int J Syst Evol Microbiol 50, 259–264.[CrossRef]
    [Google Scholar]
  6. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  7. Chen, G. & Russell, J. B. ( 1989; ). More monensin-sensitive, ammonia-producing bacteria from the rumen. Appl Environ Microbiol 55, 1052–1057.
    [Google Scholar]
  8. Cheng, G., Plugge, C. M., Roelofsen, W., Houwen, F. P. & Stams, A. J. M. ( 1992; ). Selenomonas acidaminovorans sp. nov., a versatile thermophilic proton-reducing anaerobe able to grow by the decarboxylation of succinate to propionate. Arch Microbiol 157, 169–175.
    [Google Scholar]
  9. Fardeau, M. L., Patel, B. K. C., Magot, M. & Ollivier, B. ( 1997; ). Utilization of serine, leucine, isoleucine, and valine by Thermoanaerobacter brockii in the presence of thiosulfate or Methanobacterium sp. as electron acceptors. Anaerobe 3, 405–410.[CrossRef]
    [Google Scholar]
  10. Fardeau, M.-L., Magot, M., Patel, B. K. C., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2000; ). Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50, 2141–2179.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  12. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  13. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. H. Munro. New York: Academic Press.
  14. Laanbroek, H. J., Lambers, J. T., De Vos, W. M. & Veldkamp, H. ( 1978; ). l-Aspartate fermentation by a free-living Campylobacter species. Arch Microbiol 117, 109–114.[CrossRef]
    [Google Scholar]
  15. Magot, M., Ravot, G., Campaignolle, X., Ollivier, B., Patel, B. K. C., Fardeau, M.-L., Thomas, P., Crolet, J. L. & Garcia, J. L. ( 1997; ). Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47, 818–824.[CrossRef]
    [Google Scholar]
  16. Maidak, B. L., Cole, J. R., Lilburn, T. G., Parker, C. T., Jr, Saxman, P. R., Farris, R. J., Garrity, G. M., Olsen, G. J., Schmidt, T. M. & Tiedje, J. M. ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  17. McSweeny, C. S., Allison, M. J. & Mackie, R. I. ( 1993; ). Amino acid utilization by the ruminal bacterium Synergistes jonesii strain 78-1. Arch Microbiol 159, 131–135.[CrossRef]
    [Google Scholar]
  18. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  19. Nanninga, H. J., Drent, W. J. & Gottschal, J. C. ( 1987; ). Fermentation of glutamate by Selenomonas acidaminophila sp. nov. Arch Microbiol 147, 152–157.[CrossRef]
    [Google Scholar]
  20. Örlygsson, J., Krooneman, J., Collins, M. D., Pascual, C. & Gottschal, J. C. ( 1996; ). Clostridium acetireducens sp. nov., a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium. Int J Syst Bacteriol 46, 454–459.[CrossRef]
    [Google Scholar]
  21. Paster, B. J., Russell, J. B., Yang, C. M. J., Chow, J. M., Woese, C. R. & Tanner, R. ( 1993; ). Phylogeny of the ammonia-producing ruminal bacteria Peptostreptococcus anaerobius, Clostridium sticklandii, and Clostridium aminophilum sp. nov. Int J Syst Bacteriol 43, 107–110.[CrossRef]
    [Google Scholar]
  22. Plugge, C. M., Zoetendal, E. & Stams, A. J. M. ( 2000; ). Caloramator coolhaasii sp. nov., a glutamate-degrading, moderately thermophilic anaerobe. Int J Syst Evol Microbiol 50, 1155–1162.[CrossRef]
    [Google Scholar]
  23. Plugge, C. M., Balk, M., Zoetendal, E. G. & Stams, A. J. M. ( 2002; ). Gelria glutamica gen. nov., sp. nov., a thermophilic, obligately syntrophic, glutamate-degrading anaerobe. Int J Syst Evol Microbiol 52, 401–407.
    [Google Scholar]
  24. Redburn, A. C. & Patel, B. K. C. ( 1993; ). Phylogenetic analysis of Desulfotomaculum thermobenzoicum using polymerase chain reaction-amplified 16S rRNA-specific DNA. FEMS Microbiol Lett 113, 81–86.[CrossRef]
    [Google Scholar]
  25. Rogosa, M. ( 1969; ). Acidaminococcus gen. n., Acidaminococcus fermentans sp. n., anaerobic gram-negative diplococci using amino acids as the sole energy source for growth. J Bacteriol 98, 756–766.
    [Google Scholar]
  26. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  27. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262–280.
    [Google Scholar]
  28. Smith, E. A. & Macfarlane, G. T. ( 1997; ). Dissimilatory amino acid metabolism in human colonic bacteria. Anaerobe 3, 327–337.[CrossRef]
    [Google Scholar]
  29. Stams, A. J. M. ( 1994; ). Metabolic interactions between anaerobic bacteria in methanogenic environments. Antonie van Leeuwenhoek 66, 271–294.[CrossRef]
    [Google Scholar]
  30. Stams, A. J. M. & Hansen, T. ( 1984; ). Fermentation of glutamate and other compounds by Acidaminobacter hydrogenoformans gen. nov., sp nov., an obligate anaerobe isolated from black mud. Studies with pure culture and mixed culture with sulfate-reducing bacteria and methanogenic bacteria. Arch Microbiol 137, 329–337.[CrossRef]
    [Google Scholar]
  31. Surkov, A. V., Dubinina, G. A., Lysenko, A. M., Glockner, F. O. & Kuever, J. ( 2001; ). Dethiosulfovibrio russensis sp. nov., Dethiosulfovibrio marinus sp. nov. and Dethiosulfovibrio acidaminovorans sp. nov., novel anaerobic, thiosulphate- and sulfur-reducing bacteria isolated from ‘Thiodendron’ sulfur mats in different saline environments. Int J Syst Evol Microbiol 51, 327–337.
    [Google Scholar]
  32. Tarlera, S. & Stams, A. J. M. ( 1999; ). Degradation of proteins and amino acids by Caloramator proteoclasticus in pure culture and in coculture with Methanobacterium thermoformicicum Z245. Appl Microbiol Biotechnol 53, 133–138.[CrossRef]
    [Google Scholar]
  33. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  34. Winker, S. & Woese, C. R. ( 1991; ). A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14, 305–310.[CrossRef]
    [Google Scholar]
  35. Woo, T. H. S., Patel, B. K. C., Smythe, L. D., Symonds, M. L., Norris, M. A. & Dohnt, M. F. ( 1997; ). Comparison of two PCR methods for rapid identification of Leptospira genospecies interrogans. FEMS Microbiol Lett 155, 169–177.[CrossRef]
    [Google Scholar]
  36. Zindel, U., Freudenberg, W., Rieth, M., Andreesen, J. R., Schnell, J. & Widdel, F. ( 1988; ). Eubacterium acidaminophilum, sp nov. A versatile amino acid-degrading anaerobe producing or utilizing H2 or formate. Arch Microbiol 150, 254–266.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63614-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63614-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1914 - 1918

Phase-contrast photomicrograph of cells of strain ILE2 in the exponential growth phase. Bar, 5 µm.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error