1887

Abstract

A novel sulfate-reducing bacterium was isolated from pristine sediments of Lake Stechlin, Germany. This strain, STP12, was found to contain predominantly -type cytochromes and to reduce sulfate, sulfite and thiosulfate using lactate as an electron donor. Although STP12 could not utilize elemental sulfur as an electron acceptor, it could support growth by dissimilatory Fe(III) reduction. In a comparison of 16S rRNA gene sequences, STP12 was 96.7 % similar to DSM 13351, 96.5 % similar to DSM 13257 and 96.4 % similar to DSM 765. DNA–DNA hybridization experiments revealed that strain STP12 shows only 32 % reassociation with the type strain of the type species of the genus, DSM 765. These data, considered in conjunction with strain-specific differences in heavy metal tolerance, cell-wall chemotaxonomy and riboprint patterns, support recognition of strain STP12 (=DSM 15449=JCM 12239) as the type strain of a distinct and novel species within the genus , sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63610-0
2006-12-01
2019-09-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/56/12/2729.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63610-0&mimeType=html&fmt=ahah

References

  1. Allison, J. D., Brown, D. S. & Novo-Gradac, K. J. ( 1991; ). MINTEQA2/PRODEFA2, a Geochemical Assessment Model for Environmental Systems. EPA/600/3-91/021. Cincinnati, OH: US Environmental Protection Agency.
  2. Bade, K. ( 2000; ). Survival of sulfate-reducing bacteria in oxic, oligotrophic environments related to drinking water. Doctoral dissertation, Technical University of Berlin, Berlin, Germany. http://edocs.tu-berlin.de/diss/2000/bade_karen.htm
  3. Barney, M., Volgyi, A., Navarro, A. & Ryder, D. ( 2001; ). Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 67, 553–560.[CrossRef]
    [Google Scholar]
  4. Bozzola, J. J. & Russell, L. D. ( 1999; ). Electron Microscopy – Principles and Techniques for Biologists, 2nd edn. Boston: Jones and Bartlett.
  5. Bruce, J. L. ( 1996; ). Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50, 77–81.
    [Google Scholar]
  6. Campbell, L. L. & Postgate, J. R. ( 1965; ). Classification of the spore-forming sulfate-reducing bacteria. Bacteriol Rev 29, 359–363.
    [Google Scholar]
  7. Cappuccino, J. G. & Sherman, N. ( 1999; ). Microbiology – a Laboratory Manual, 5th edn. Menlo Park, CA: Benjamin/Cummings.
  8. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  9. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  10. Coleman, M. L., Hedrick, D. B., Lovley, D. R., White, D. C. & Pye, K. ( 1993; ). Reduction of Fe(III) in sediments by sulphate-reducing bacteria. Nature 361, 436–438.[CrossRef]
    [Google Scholar]
  11. Cypionka, H. & Pfennig, N. ( 1986; ). Growth yields of Desulfotomaculum orientis with hydrogen in chemostat culture. Arch Microbiol 143, 366–369.
    [Google Scholar]
  12. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  13. Detmers, J., Strauss, H., Schulte, U., Bergmann, A., Knittel, K. & Kuever, J. ( 2004; ). FISH shows that Desulfotomaculum spp. are the dominating sulfate-reducing bacteria in a pristine aquifer. Microb Ecol 47, 236–242.
    [Google Scholar]
  14. Franzmann, P. D., Robertson, W. J., Zappia, L. R. & Davis, G. B. ( 2002; ). The role of microbial populations in the containment of aromatic hydrocarbons in the subsurface. Biodegradation 13, 65–78.[CrossRef]
    [Google Scholar]
  15. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A. ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef]
    [Google Scholar]
  16. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  17. Jahnke, K. D. ( 1992; ). Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford system 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  18. Johnson, D. L. & Pilson, M. E. ( 1972; ). Spectrophotometric determination of arsenite, arsenate, and phosphate in natural waters. Anal Chim Acta 58, 289–299.[CrossRef]
    [Google Scholar]
  19. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  20. Kämpfer, P. & Kroppenstedt, R. M. ( 1996; ). Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42, 989–1005.[CrossRef]
    [Google Scholar]
  21. Klemps, R., Cypionka, H., Widdel, F. & Pfennig, N. ( 1985; ). Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143, 203–208.[CrossRef]
    [Google Scholar]
  22. Kroppenstedt, R. M. ( 1985; ). Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics, SAB Technical Series, no. 20, pp. 173–179. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press
  23. Kusel, K., Roth, U., Trinkwalter, T. & Peiffer, S. ( 2001; ). Effect of pH on the anaerobic microbial cycling of sulfur in mining-impacted freshwater lake sediments. Environ Exp Bot 46, 213–223.[CrossRef]
    [Google Scholar]
  24. Liu, A., Garcia-Dominguez, E., Rhine, E. D. & Young, L. Y. ( 2004; ). A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48, 323–332.[CrossRef]
    [Google Scholar]
  25. Madigan, M. T., Martinko, J. M. & Parker, J. ( 1997; ). Brock: Biology of Microorganisms, 8th edn. Upper Saddle River, NJ: Prentice Hall.
  26. Magee, C. M., Rodeheaver, G., Edgerton, M. T. & Edlich, R. F. ( 1975; ). A more reliable gram staining technic for diagnosis of surgical infections. Am J Surg 130, 341–346.[CrossRef]
    [Google Scholar]
  27. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  28. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  29. Nevin, K. P., Finneran, K. T. & Lovley, D. R. ( 2003; ). Microorganisms associated with uranium bioremediation in a high-salinity subsurface sediment. Appl Environ Microbiol 69, 3672–3675.[CrossRef]
    [Google Scholar]
  30. Newman, D. K., Kennedy, E. K., Coates, J. D., Ahmann, D., Ellis, D. J., Lovley, D. R. & Morel, F. M. ( 1997; ). Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch Microbiol 168, 380–388.[CrossRef]
    [Google Scholar]
  31. Niggemyer, A., Spring, S., Stackebrandt, E. & Rosenzweig, R. F. ( 2001; ). Isolation and characterization of a novel As(V)-reducing bacterium, implications for arsenic mobilization and the genus Desulfitobacterium. Appl Environ Microbiol 67, 5568–5580.[CrossRef]
    [Google Scholar]
  32. Postgate, J. R. ( 1959; ). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482.
    [Google Scholar]
  33. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  34. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  35. Robertson, W. J., Franzmann, P. D. & Mee, B. J. ( 2000; ). Spore-forming, Desulfosporosinus-like sulphate-reducing bacterium from a shallow aquifer contaminated with gasoline. J Appl Microbiol 88, 248–259.[CrossRef]
    [Google Scholar]
  36. Robertson, W. J., Bowman, J. P., Franzmann, P. D. & Mee, B. J. ( 2001; ). Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasolene-contaminated groundwater. Int J Syst Evol Microbiol 51, 133–140.
    [Google Scholar]
  37. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  38. Sass, H., Cypionka, H. & Babenzien, H.-D. ( 1997; ). Vertical distribution of sulfate-reducing bacteria at the oxic-anoxic interface in sediments of the oligotrophic Lake Stechlin. FEMS Microbiol Ecol 22, 245–255.[CrossRef]
    [Google Scholar]
  39. Sasser, M. ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20, 1–6.
    [Google Scholar]
  40. Scheid, D., Stubner, S. & Conrad, R. ( 2004; ). Identification of rice root associated nitrate, sulfate and ferric iron reducing bacteria during root decomposition. FEMS Microbiol Ecol 50, 101–110.[CrossRef]
    [Google Scholar]
  41. Scott, T. M., Parveen, S., Portier, K. M., Rose, J. B., Tamplin, M. L., Farrah, S. R., Koo, A. & Lukasik, J. ( 2003; ). Geographical variation in ribotype profiles of Escherichia coli isolates from humans, swine, poultry, beef, and dairy cattle in Florida. Appl Environ Microbiol 69, 1089–1092.[CrossRef]
    [Google Scholar]
  42. Shelobolina, E. S., O'Neill, K., Finneran, K. T., Hayes, L. A. & Lovley, D. R. ( 2003; ). Potential for in situ bioremediation of a low-pH, high-nitrate uranium-contaminated groundwater. Soil Sediment Contam 12, 865–884.[CrossRef]
    [Google Scholar]
  43. Stackebrandt, E., Sproer, C., Rainey, F. A., Burghardt, J., Pauker, O. & Hippe, H. ( 1997; ). Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int J Syst Bacteriol 47, 1134–1139.[CrossRef]
    [Google Scholar]
  44. Stackebrandt, E., Schumann, P., Schüler, E. & Hippe, H. ( 2003; ). Reclassification of Desulfotomaculum auripigmentum as Desulfosporosinus auripigmenti corrig., comb. nov. Int J Syst Evol Microbiol 53, 1439–1443.[CrossRef]
    [Google Scholar]
  45. Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. ( 2002; ). Nanometre-sized products of uranium bioreduction. Nature 419, 134.[CrossRef]
    [Google Scholar]
  46. Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. ( 2003; ). Microbial populations stimulated for hexavalent uranium reduction in uranium mine sediment. Appl Environ Microbiol 69, 1337–1346.[CrossRef]
    [Google Scholar]
  47. Suzuki, Y., Kelly, S. D., Kemner, K. M. & Banfield, J. F. ( 2004; ). Enzymatic U(VI) reduction by Desulfosporosinus species. Radiochim Acta 92, 11–16.[CrossRef]
    [Google Scholar]
  48. Vainshtein, M., Gogotova, G. & Hippe, H. ( 1994; ). A sulphate-reducing bacterium from the permafrost. In Viable Microorganisms in Permafrost, pp. 68–74. Edited by D. Gilichinsky. Pushchino: Russian Academy of Science Pushchino Research Centre.
  49. Widdel, F. ( 1980; ). Anaerober Abbau von Fettsauren und Benzoesaure durch neu isolierte Arten Sulfat-reduzierender Bakterian. Doctoral thesis, University of Gottingen, Gottingen, West Germany.
  50. Widdel, F. & Pfennig, N. ( 1977; ). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Arch Microbiol 112, 119–122.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63610-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63610-0
Loading

Data & Media loading...

Transmission electron micrograph of cells of strain STP12 showing endospore formation. Bar, 500 nm.

IMAGE

Lactate oxidation and growth curve of strain STP12 at pH 7.0. [PDF](16 KB)

PDF

Metal-tolerance profiles using 10 mM sodium lactate as electron donor and 5 mM sodium sulfate as the terminal electron acceptor. [PDF](20 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error