1887

Abstract

Thirteen bacterial isolates from lake sediment, capable of degrading cyanobacterial hepatotoxins microcystins and nodularin, were characterized by phenotypic, genetic and genomic approaches. Cells of these isolates were Gram-negative, motile by means of a single polar flagellum, oxidase-positive, weakly catalase-positive and rod-shaped. According to phenotypic characteristics (carbon utilization, fatty acid and enzyme activity profiles), the G+C content of the genomic DNA (66·1–68·0 mol%) and 16S rRNA gene sequence analysis (98·9–100 % similarity) the strains formed a single microdiverse genospecies that was most closely related to (95·7–96·3 % 16S rRNA gene sequence similarity). The isolates assimilated only a few carbon sources. Of the 96 carbon sources tested, Tween 40 was the only one used by all strains. The strains were able to mineralize phosphorus from organic compounds, and they had strong leucine arylamidase and chymotrypsin activities. The cellular fatty acids identified from all strains were C (9·8–19 %) and C 7 (<1–5·8 %). The other predominant fatty acids comprised three groups: summed feature 3 (<1–2·2 %), which included C 3-OH and C iso I, summed feature 4 (54–62 %), which included C 7 and C iso OH, and summed feature 7 (8·5–28 %), which included 7, 9 and 12 forms of C. A more detailed analysis of two strains indicated that C 7 was the main fatty acid. The phylogenetic and phenotypic features separating our strains from recognized bacteria support the creation of a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is 2C20 (=DSM 16998=HAMBI 2767=VYH 193597).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63599-0
2005-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551563.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63599-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anzai Y., Kim H., Park J. Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  3. APHA 1985 Standard Methods for the Examination of Water and Wastewater , 16th edn. Washington, DC: American Public Health Association;
    [Google Scholar]
  4. Christner B. C., Kvitko B. H. II, Reeve J. N. 2003; Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7:177–183
    [Google Scholar]
  5. Danielsson Thorell H., Stenklo K., Karlsson J., Nilsson T. 2003; A gene cluster for chlorate metabolism in Ideonella dechloratans . Appl Environ Microbiol 69:5585–5592 [CrossRef]
    [Google Scholar]
  6. Elbeltagy A., Nishioka K., Sato T., Suzuki H., Ye B., Hamada T., Isawa T., Mitsui H., Minamisawa K. 2001; Endophytic colonization and in planta nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Appl Environ Microbiol 67:5285–5293 [CrossRef]
    [Google Scholar]
  7. Hitzfeld B. C., Lampert C. S., Spaeth N., Mountfort D., Kaspar H., Dietrich D. R. 2000; Toxin production in cyanobacterial mats from ponds on the McMurdo ice shelf, Antarctica. Toxicon 38:1731–1748 [CrossRef]
    [Google Scholar]
  8. Holst T., Jørgensen N. O. G., Jørgensen C., Johansen A. 2003; Degradation of microcystin in sediments at oxic and anoxic, denitrifying conditions. Water Res 37:4748–4760 [CrossRef]
    [Google Scholar]
  9. Ishii H., Nishijima M., Abe T. 2004; Characterization of degradation process of cyanobacterial hepatotoxins by a gram-negative aerobic bacterium. Water Res 38:2667–2676 [CrossRef]
    [Google Scholar]
  10. Jones G. J., Bourne D. G., Blakeley R. L., Doelle H. 1994; Degradation of the cyanobacterial hepatotoxin microcystin by aquatic bacteria. Nat Toxins 2:228–235 [CrossRef]
    [Google Scholar]
  11. Kalmbach S., Manz W., Szewzyk U. 1997; Isolation of new bacterial species from drinking water biofilms and proof of their in situ dominance with highly specific 16S rRNA probes. Appl Environ Microbiol 63:4164–4170
    [Google Scholar]
  12. Kulakov L. A., McAllister M. B., Ogden K. L., Larkin M. J., O'Hanlon J. F. 2002; Analysis of bacteria contaminating ultrapure water in industrial systems. Appl Environ Microbiol 68:1548–1555 [CrossRef]
    [Google Scholar]
  13. Lahti K., Niemi R. M., Rapala J., Sivonen K. 1998; Biodegradation of cyanobacterial toxins – characterization of toxin degrading bacteria. In Harmful Algae. Proceedings of the VIII International Conference of Harmful Algae pp  363–365 Edited by Reguera B., Blanco J., Fernández M. L., Wyatt T. Santiago de Compostela: Intergovernmental Oceanographic Commission of UNESCO;
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Murray R. G. E. 1981; Morphology. In Manual of Methods for General Bacteriology Section 1 pp  5–61 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Nohynek L. J., Häggblom M. M., Palleroni N. J., Kronqvist K., Nurmiaho-Lassila E.-L., Salkinoja-Salonen M. 1993; Characterization of a Mycobacterium fortuitum strain capable of degrading polychlorinated phenolic compounds. Syst Appl Microbiol 16:126–134
    [Google Scholar]
  17. Park J. K., Shimono K., Ochiai N., Shigeru K., Kurita M., Ohta Y., Tanaka K., Matsuda H., Kawamukai M. 1999; Purification, characterization, and gene analysis of a chitosanase (ChoA) from Matsuebacter chitosanotabidus 3001. J Bacteriol 181:6642–6649
    [Google Scholar]
  18. Park H.-D., Sasaki Y., Maruyama T., Yanagisawa E., Hiraishi A., Kato K. 2001; Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environ Toxicol 16:337–343 [CrossRef]
    [Google Scholar]
  19. Rapala J., Erkomaa K., Kukkonen J., Sivonen K., Lahti K. 2002; Detection of microcystins with protein phosphatase inhibition assay, high-performance liquid chromatography–UV-detection and enzyme-linked immunosorbent assay. Comparison of methods. Anal Chim Acta 466:213–231 [CrossRef]
    [Google Scholar]
  20. Saito T., Okano K., Park H.-D., Itayama T., Inamori Y., Neilan B. A., Burns B. P., Sugiura N. 2003; Detection and sequencing of the microcystin LR-degrading gene, mlrA , from new bacteria isolated from Japanese lakes. FEMS Microbiol Lett 229:271–276 [CrossRef]
    [Google Scholar]
  21. Sartory D. P., Howard L. 1992; A medium detecting β -glucuronidase for the simultaneous membrane filtration enumeration of Escherichia coli and coliforms from drinking water. Lett Appl Microbiol 15:273–276 [CrossRef]
    [Google Scholar]
  22. Sivonen K., Jones G. 1999; Cyanobacterial toxins. In Toxic Cyanobacteria in Water. A Guide to Their Public Health Consequences Monitoring and Management pp  41–111 Edited by Chorus I., Bartram J. London: E & FN Spon;
    [Google Scholar]
  23. Suyama T., Shigematsu T., Takaichi S., Nodasaka Y., Fujikawa S., Hosoya H., Tokiwa Y., Kanagawa T., Hanada S. 1999; Roseateles depolymerans gen. nov. sp. nov. a new bacteriochlorophyll a -containing obligate aerobe belonging to the β -subclass of the Proteobacteria . Int J Syst Bacteriol 49:449–457 [CrossRef]
    [Google Scholar]
  24. Swofford D. L. 2001 paup*: Phylogenetic Analysis Using Parsimony *and Other Methods, version 4.0b8 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  25. Tabatabai M. A. 1994; Soil enzymes. In Methods of Soil Analysis, Part 2. Microbiological and Biochemical Properties pp  775–833 Edited by Weaver R. W., Angle S., Bottomley P., Bezdicek D., Smith S., Tabatabai A., Wollum A. Madison, WI: Soil Science Society of America;
    [Google Scholar]
  26. van Trappen S., Mergaert J., Van Eygen S., Dawyndt P., Cnockaert M. C., Swings J. 2002; Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten Antarctic lakes. Syst Appl Microbiol 25:603–610 [CrossRef]
    [Google Scholar]
  27. Vepsäläinen M., Kukkonen S., Vestberg M., Sirviö H., Niemi R. M. 2001; Application of soil enzyme activity test kit in a field experiment. Soil Biol Biochem 33:1665–1672 [CrossRef]
    [Google Scholar]
  28. Ward N. R., Wolfe R. L., Justice C. A., Olson B. H. 1986; The identification of gram-negative, non-fermentative bacteria from water: problems and alternative approaches to identification. Adv Appl Microbiol 31:293–365
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63599-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63599-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error