1887

Abstract

Twelve chemolithotrophic strains were isolated from temperate orchard soil on reduced sulfur compounds as energy and electron sources and characterized on the basis of their physiological properties and ability to oxidize various reduced sulfur compounds. The new isolates could oxidize tetrathionate as well as thiosulfate, and oxidation of the latter involved conversion of thiosulfate to tetrathionate followed by its accumulation and eventual oxidation to sulfate, manifested in the production of acid. The mesophilic, neutrophilic, Gram-negative and coccoid bacteria had a respiratory metabolism. Physiologically and biochemically, all the strains were more or less similar, differing only in their growth rates and ability to utilize a few carbon compounds as single heterotrophic substrates. 16S rRNA gene sequence analysis was performed with five representative strains, which revealed a high degree of similarity (⩾99 %) among them and placed the cluster in the ‘’. The strains showed low levels (93·5–95·3 %) of 16S rRNA gene sequence similarity to , , and species belonging to the genera , and . The taxonomic coherence of the new isolates was confirmed by DNA–DNA hybridization. On the basis of their uniformly low 16S rRNA gene sequence similarities to species of all the closest genera, unique fatty acid profile, distinct G+C content (54–55·2 mol%) and phenotypic characteristics that include efficient chemolithotrophic utilization of tetrathionate, the organisms were classified in a new genus, gen. nov. In the absence of any significant discriminatory phenotypic or genotypic characteristics, all the new isolates are considered to constitute a single species, for which the name sp. nov. (type strain WT001=LMG 22695=MTCC 7002) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63595-0
2005-09-01
2020-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551779.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63595-0&mimeType=html&fmt=ahah

References

  1. Appia-Ayme C., Little P. J., Matsumoto Y., Leech A. P., Berks B. C. 2001; Cytochrome complex essential for photosynthetic oxidation of both thiosulfate and sulfide in Rhodovulum sulfidophilum . J Bacteriol 183:6107–6118 [CrossRef]
    [Google Scholar]
  2. Blümel S., Mark B., Busse H.-J., Kämpfer P., Stolz A. 2001; Pigmentiphaga kullae gen. nov. sp. nov. a novel member of the family Alcaligenaceae with the ability to decolorize azo dyes aerobically. Int J Syst Evol Microbiol 511867–1871 [CrossRef]
    [Google Scholar]
  3. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E. 1996; Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987 [CrossRef]
    [Google Scholar]
  4. Deb C., Stackebrandt E., Pradella S., Saha A., Roy P. 2004; Phylogenetically diverse new sulfur chemolithotrophs of alpha-proteobacteria isolated from Indian soils. Curr Microbiol 48:452–458
    [Google Scholar]
  5. Dees S. B., Moss C. W. 1975; Cellular fatty acids of Alcaligenes and Pseudomonas species isolated from clinical specimens. J Clin Microbiol 1:414–419
    [Google Scholar]
  6. Dees S. B., Moss C. W. 1978; Identification of Achromobacter species by cellular fatty acids and by production of keto acids. J Clin Microbiol 8:61–66
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S. L., Miura H., Matsui K., Yabuuchi E. 1988; Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization in microdilution wells. J Clin Microbiol 26:1708–1713
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip – Phylogeny Inference Package, version 3.5c. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Foss S., Heyen U., Harder J. 1998; Alcaligenes defragrans sp. nov., description of four strains isolated on alkenoic monoterpenes ((+)-menthene, alpha-pinene, 2-carene, and alpha-phellandrene) and nitrate. Syst Appl Microbiol 21:237–244 [CrossRef]
    [Google Scholar]
  11. Friedrich C. G. 1998; Physiology and genetics of sulfur-oxidizing bacteria. Adv Microb Physiol 39:235–289
    [Google Scholar]
  12. Friedrich C. G., Mitrenga G. 1981; Oxidation of thiosulfate by Paracoccus denitrificans and other hydrogen bacteria. FEMS Microbiol Lett 10:209–212 [CrossRef]
    [Google Scholar]
  13. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882 [CrossRef]
    [Google Scholar]
  14. Fuchs T., Huber H., Burggraf S., Stetter K. O. 1996; 16S rDNA-based phylogeny of the archaeal order Sulfolobales and reclassification of Desulfurolobus ambivalens as Acidianus ambivalens comb. nov. Syst Appl Microbiol 19:56–60 [CrossRef]
    [Google Scholar]
  15. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Holmes B., Moss C. W., Daneshvar M. I. 1993; Cellular fatty acid compositions of “ Achromobacter groups B and E”. J Clin Microbiol 31:1007–1008
    [Google Scholar]
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Katayama Y., Hiraishi A., Kuraishi H. 1995; Paracoccus thiocyanatus sp. nov., a new species of thiocyanate-utilizing facultative chemolithotroph, and transfer of Thiobacillus versutus to the genus Paracoccus as Paracoccus versutus comb. nov. with emendation of the genus. Microbiology 141:1469–1477 [CrossRef]
    [Google Scholar]
  19. Kelly D. P. 1989; Physiology and biochemistry of unicellular sulfur bacteria. In Autotrophic Bacteria pp  193–217 Edited by Schlegel H. G., Bowien B. Madison, WI: Science Tech Publishers; Berlin & New York: Springer;
    [Google Scholar]
  20. Kelly D. P., Wood A. P. 1994; Synthesis and determination of thiosulfate and polythionates. Methods Enzymol 243:475–501
    [Google Scholar]
  21. Kelly D. P., Wood A. P. 2000; Reclassification of some species of Thiobacillus to the newly designated genera Acidithiobacillus gen.nov., Halothiobacillus gen. nov. and Thermithiobacilllus gen. nov. Int J Syst Evol Microbiol 50:511–516 [CrossRef]
    [Google Scholar]
  22. Kelly D. P., Shergill J. K., Lu W.-P., Wood A. P. 1997; Oxidative metabolism of inorganic sulfur compounds by bacteria. Antonie van Leeuwenhoek 71:95–107 [CrossRef]
    [Google Scholar]
  23. Kelly D. P., McDonald I. R., Wood A. P. 2000; Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen nov., comb. nov., in the α-subclass of the Proteobacteria . Int J Syst Evol Microbiol 50:1797–1802
    [Google Scholar]
  24. Kersters K., De Ley J. 1984; Genus Alcaligenes Castellani and Chalmers 1919, 936AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  361–373 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  25. Labrenz M., Tindall B. J., Lawson P. A., Collins M. D., Schumann P., Hirsch P. 2000; Staleya guttiformis gen. nov., sp. nov. and Sulfitobacter brevis sp. nov., α -3- Proteobacteria from hypersaline, heliothermal and meromictic Antarctic Ekho Lake. Int J Syst Evol Microbiol 50:303–313 [CrossRef]
    [Google Scholar]
  26. Lane D. J., Stahl D. A., Olsen G. J., Heller D. J., Pace N. R. 1985; Phylogenetic analysis of the genera Thiobacillus and Thiomicrospira by 5S rRNA sequences. J Bacteriol 163:75–81
    [Google Scholar]
  27. McDonald I. R., Kelly D. P., Murrell J. C., Wood A. P. 1997; Taxonomic relationships of Thiobacillus halophilus , T. aquaesulis , and other species of Thiobacillus , as determined using 16S rDNA sequencing. Arch Microbiol 166:394–398 [CrossRef]
    [Google Scholar]
  28. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  29. Moreira D., Amils R. 1997; Phylogeny of Thiobacillus cuprinus and other mixotrophic thiobacilli: proposal for Thiomonas gen. nov. Int J Syst Bacteriol 47:522–528 [CrossRef]
    [Google Scholar]
  30. Mukhopadhyaya P. N., Deb C., Lahiri C., Roy P. 2000; A soxA gene, encoding a diheme cytochrome c, and a sox locus, essential for sulfur oxidation in a new sulfur lithotrophic bacterium. J Bacteriol 182:4278–4287 [CrossRef]
    [Google Scholar]
  31. Nathansohn A. 1902; Über eine neue Gruppe von Schwefelbakterien und ihren Stoffwechsel. Mitt Zool Stn Neapel 15:655–680 (in German
    [Google Scholar]
  32. Odintsova E. V., Jannasch H. W., Mamone J. A., Langworthy T. A. 1996; Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Bacteriol 46:422–428 [CrossRef]
    [Google Scholar]
  33. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  34. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  35. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy San Francisco: W. H. Freeman;
    [Google Scholar]
  36. Sugimoto C., Isayama Y., Sakazaki R., Kuramochi S. 1983; Transfer of Haemophilus equigenitalis Taylor et al . 1978 to the genus Taylorella gen. nov. as Taylorella equigenitalis comb. nov. Curr Microbiol 9:155–162 [CrossRef]
    [Google Scholar]
  37. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  38. Vandamme P., Segers P., Ryll M. 8 other authors 1998; Pelistega europaea gen. nov., sp. nov., a bacterium associated with respiratory disease in pigeons: taxonomic structure and phylogenetic allocation. Int J Syst Bacteriol 48:431–440 [CrossRef]
    [Google Scholar]
  39. Yabuuchi E., Kawamura Y., Kosako Y., Ezaki T. 1998; Emendation of the genus Achromobacter and Achromobacter xylosoxidans (Yabuuchi and Yano) and proposal of Achromobacter ruhlandii (Packer and Vishniac) comb.nov., Achromobacter piechaudii (Kiredjian et al .) comb. nov., and Achromobacter xylosoxidans subsp. denitrificans (Rüger and Tan) comb. nov. Microbiol Immunol 42:429–438 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63595-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63595-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error