1887

Abstract

A novel, thermophilic, anaerobic bacterium that is able to tolerate hydrogen was isolated from a deep-sea hydrothermal chimney collected at the Rainbow field on the Mid-Atlantic Ridge. Cells were rod-shaped and surrounded by a sheath-like outer structure (toga); they were weakly motile by means of a polar flagellum. They appeared singly, in pairs or in short chains. They grew at 35–65 °C (optimum 60 °C), pH 4·5–8·5 (optimum pH 6·0) and 10–65 g sea salts l (optimum 30–40 g l). The isolate was organotrophic, and able to grow on various carbohydrates or complex proteinaceous substrates. Growth was not inhibited under 100 % hydrogen or in the presence of 2 % oxygen in the gas phase. The isolate reduces sulfur, although sulfur reduction is not required for growth. The fermentation products identified on glucose were acetate, ethanol, formate, hydrogen and CO. The G+C content of the genomic DNA was 28±1 mol%. Phylogenetic analysis of the 16S rRNA gene placed the strain within the genus , order , in the bacterial domain. On the basis of the 16S rRNA gene sequence comparisons and physiological characteristics, the isolate is considered to represent a novel species, for which the name sp. nov. is proposed. The type strain is AT1271 (=DSM 16785=JCM 12826).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63550-0
2005-05-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551217.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63550-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Marteinsson, V. T., Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., Prieur, D. & Birrien, J. L. ( 2002; ). Marinitoga piezophila sp. nov., a rod-shaped, thermo-piezophilic bacterium isolated under high hydrostatic pressure from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1331–1339.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Gish, W., Miller, W., Meyers, E. W. & Lipman, D. J. ( 1990; ). Basic local alignment search tool. J Mol Biol 215, 403–410.[CrossRef]
    [Google Scholar]
  3. Antoine, E., Cilia, V., Meunier, J., Guezennec, J., Lesongeur, F. & Barbier, G. ( 1997; ). Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47, 1118–1123.[CrossRef]
    [Google Scholar]
  4. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  5. Baross, J. A. ( 1995; ). Isolation, growth and maintenance of hyperthermophiles. In Archaea: a Laboratory Manual, Thermophiles, pp. 15–23. Edited by F. T. Robb & A. R. Place. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  6. Charlou, J. L., Donval, J. P., Fouquet, Y., Jean-Baptiste, P. & Holm, N. ( 2002; ). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chem Geol 191, 345–359.[CrossRef]
    [Google Scholar]
  7. Davey, M. E., Wood, W. A., Key, R., Nakamura, K. & Stahl, D. ( 1993; ). Isolation of three species of Geotoga and Petrotoga: two new genera, representing a new lineage in the bacterial line of descent distantly related to the ‘Thermotogales’. Syst Appl Microbiol 16, 191–200.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  9. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  10. Galtier, N., Gouy, M. & Gautier, C. ( 1996; ). seaview and phylo_win: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12, 543–548.
    [Google Scholar]
  11. Godfroy, A., Lesongeur, F., Raguénès, G., Quérellou, J., Antoine, E., Meunier, J.-R., Guezennec, J. & Barbier, G. ( 1997; ). Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from deep-sea hydrothermal vent. Int J Syst Bacteriol 47, 622–626.[CrossRef]
    [Google Scholar]
  12. Godfroy, A., Raven, N. D. H. & Sharp, R. J. ( 2000; ). Physiology and continuous culture of the hyperthermophilic deep-sea vent archaeon Pyrococcus abyssi ST549. FEMS Microbiol Lett 186, 127–132.[CrossRef]
    [Google Scholar]
  13. Huber, R., Langworthy, T. A., König, H., Thomm, M., Woese, C. R., Sleytr, U. B. & Stetter, K. O. ( 1986; ). Thermotoga maritima sp. nov. represents a new genus of uniquely extremely thermophilic eubacteria growing up to 90 °C. Arch Microbiol 144, 324–333.[CrossRef]
    [Google Scholar]
  14. Huber, R., Woese, C. R., Langworthy, T. A., Fricke, H. & Stetter, K. O. ( 1989; ). Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the “Thermotogales”. Syst Appl Microbiol 12, 32–37.[CrossRef]
    [Google Scholar]
  15. Jeanthon, C., Reysenbach, A.-L., L'Haridon, S., Gambacorta, A., Pace, N. R., Glenat, P. & Prieur, D. ( 1995; ). Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch Microbiol 164, 91–97.[CrossRef]
    [Google Scholar]
  16. Lien, T., Madsen, M., Rainey, F. A. & Birkeland, N. K. ( 1998; ). Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol 48, 1007–1013.[CrossRef]
    [Google Scholar]
  17. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  18. Patel, B. K. C., Morgan, H. W. & Daniel, R. M. ( 1985; ). Fervidobacterium nodosum gen. nov. and spec. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 141, 63–69.[CrossRef]
    [Google Scholar]
  19. Postec, A., Urios, L., Lesongeur, L., Ollivier, B., Querellou, J. & Godfroy, A. ( 2005; ). Continuous enrichment culture and molecular monitoring to investigate the microbial diversity of thermophiles inhabiting deep-sea hydrothermal ecosystems. Curr Microbiol 50 (in press). doi:10.1007/s00284-004-4443-z
    [Google Scholar]
  20. Powers, E. M. ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61, 3756–3758.
    [Google Scholar]
  21. Raguénès, G., Pignet, P., Gauthier, G., Peres, A., Christen, R., Rougeaux, H., Barbier, G. & Guezennec, J. ( 1996; ). Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alteromonas macleodii subsp. fijiensis, and preliminary characterization of the polymer. Appl Environ Microbiol 62, 67–73.
    [Google Scholar]
  22. Raguénès, G., Christen, R., Guezennec, J., Pignet, P. & Barbier, G. ( 1997; ). Vibrio diabolicus sp. nov., a new polysaccharide-secreting organism isolated from a deep-sea hydrothermal vent polychaete annelid, Alvinella pompejana. Int J Syst Bacteriol 47, 989–995.[CrossRef]
    [Google Scholar]
  23. Raven, N., Ladwa, N. & Sharp, R. ( 1992; ). Continuous culture of the hyperthermophilic archaeum Pyrococcus furiosus. Appl Microbiol Biotechnol 38, 263–267.
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Sharp, R. J. & Raven, N. D. H. ( 1997; ). Isolation and growth of hyperthermophiles. In Applied Microbial Physiology: a Practical Approach, pp. 23–51. Edited by P. M. Rhodes & P. F. Stanbury. Oxford: IRL Press.
  26. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  27. Van Ooteghem, S. A., Beer, S. K. & Yue, P. C. ( 2002; ). Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl Biochem Biotechnol 98–100, 177–189.
    [Google Scholar]
  28. Wery, N., Lesongeur, F., Pignet, P., Derennes, V., Cambon-Bonavita, M. A., Godfroy, A. & Barbier, G. ( 2001a; ). Marinitoga camini gen. nov., sp. nov., a rod-shaped bacterium belonging to the order Thermotogales, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 495–504.
    [Google Scholar]
  29. Wery, N., Moricet, J. M., Cueff, V., Jean, J., Pignet, P., Lesongeur, F., Cambon-Bonavita, M. A. & Barbier, G. ( 2001b; ). Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51, 1789–1796.[CrossRef]
    [Google Scholar]
  30. Windberger, E., Huber, R., Trincone, A., Fricke, H. & Stetter, K. O. ( 1989; ). Thermotoga thermarum sp. nov. and Thermotoga neapolitana occurring in African continental solfataric springs. Arch Microbiol 151, 506–512.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63550-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63550-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error