1887

Abstract

Amongst 440 strains of isolated from soil and marine sediment for a population genetic study, eight strains were each presumed to represent a novel genomic group and were compared with each other and to reference strains of genomovars 1 to 10 and other species by DNA–DNA hybridization, 16S rRNA and internally transcribed 16S–23S rRNA spacer region (ITS1) sequences and basic physiological properties defining the species. While 16S rRNA and ITS1 gene sequences positioned the eight strains within the phylogenetic branch of , the DNA–DNA hybridizations with reference strains of the 10 described genomovars and among the novel strains were generally below 70 %, which is the threshold for species and genomovar differentiation. Since the physiological properties studied in the eight strains fitted the profile of , eight new genomovars of , numbered 11 to 18, are proposed, with strains 28a50, 28a39, 28a22, 28a3, 4C29, 24a13, 24a75 and MT-1 being the reference strains. The highly transformable reference strain 28a3 of genomovar 14 had a localized 16S rRNA gene sequence tag characteristic of genomovar strains 2 and 3, suggesting a possible horizontal gene transfer event involving part of the 16S rRNA gene.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63535-0
2005-09-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs551767.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63535-0&mimeType=html&fmt=ahah

References

  1. Bennasar A., Rosselló-Mora R., Lalucat J, Moore E. R. 1996; 16S rRNA gene sequence analysis relative to genomovars of Pseudomonas stutzeri and proposal of Pseudomonas balearica sp. nov. Int J Syst Bacteriol 46:200–205 [CrossRef]
    [Google Scholar]
  2. Berndt C., Meier P., Wackernagel W. 2003; DNA restriction is a barrier to natural transformation in Pseudomonas stutzeri JM300. Microbiology 149:895–901 [CrossRef]
    [Google Scholar]
  3. Cladera A., Bennasar A., Barceló M., Lalucat J., García-Valdés E. 2004; Comparative genetic diversity of Pseudomonas stutzeri genomovars, clonal structure, and phylogeny of the species. J Bacteriol 186:5239–5248 [CrossRef]
    [Google Scholar]
  4. García-Valdés E., Castillo M. M., Bennasar A., Guasp C., Cladera A. M., Bosch R., Engesser K. H., Lalucat J. 2003; Polyphasic characterization of Pseudomonas stutzeri CLN100 which simultaneously degrades chloro- and methylaromatics: a new genomovar within the species. Syst Appl Microbiol 26:390–403 [CrossRef]
    [Google Scholar]
  5. Guasp C., Moore E. R., Lalucat J., Bennasar A. 2000; Utility of internally transcribed 16S-23S rDNA spacer regions for the definition of Pseudomonas stutzeri genomovars and other Pseudomonas species. Int J Syst Evol Microbiol 50:1629–1639 [CrossRef]
    [Google Scholar]
  6. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  7. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  8. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  9. Meier P., Wackernagel W. 2003; Mechanisms of homology-facilitated illegitimate recombination for foreign DNA acquisition in transformable Pseudomonas stutzeri . Mol Microbiol 48:1107–1118 [CrossRef]
    [Google Scholar]
  10. Musarrat J., Hashsham S. A. 2003; Customized cDNA microarray for expression profiling of environmentally important genes of Pseudomonas stutzeri strain KC. Teratog Carcinog Mutagen Suppl 1:283–294
    [Google Scholar]
  11. Obradors N., Aguilar J. 1991; Efficient biodegradation of high-molecular-weight polyethylene glycols by pure cultures of Pseudomonas stutzeri . Appl Environ Microbiol 57:2383–2388
    [Google Scholar]
  12. Rius N., Fusté M. C., Guasp C., Lalucat J., Loren J. G. 2001; Clonal population structure of Pseudomonas stutzeri , a species with exceptional genetic diversity. J Bacteriol 183:736–744 [CrossRef]
    [Google Scholar]
  13. Rosselló R. A., García-Valdés E., Lalucat J., Ursing J. 1991; Genotypic and phenotypic diversity of Pseudomonas stutzeri . Syst Appl Microbiol 14:150–157 [CrossRef]
    [Google Scholar]
  14. Rosselló-Mora R., Amann R. 2001; The species concept for prokaryotes. FEMS Microbiol Rev 25:39–67 [CrossRef]
    [Google Scholar]
  15. Rosselló-Mora R. A., Lalucat J., García-Valdés E. 1994; Comparative biochemical and genetic analysis of naphthalene degradation among Pseudomonas stutzeri strains. Appl Environ Microbiol 60:966–972
    [Google Scholar]
  16. Rosselló-Mora R. A., Lalucat J., Moore E. R. B. 1996; Strain JM300 represents a new genomovar within Pseudomonas stutzeri . Syst Appl Microbiol 19:596–599 [CrossRef]
    [Google Scholar]
  17. Sepúlveda-Torres L. C., Zhou J., Guasp C., Lalucat J., Knaebel D., Plank J. L., Criddle C. S. 2001; Pseudomonas sp. strain KC represents a new genomovar within Pseudomonas stutzeri . Int J Syst Evol Microbiol 51:2013–2019 [CrossRef]
    [Google Scholar]
  18. Sikorski J., Graupner S., Lorenz M. G., Wackernagel W. 1998; Natural genetic transformation of Pseudomonas stutzeri in a non-sterile soil. Microbiology 144:569–576 [CrossRef]
    [Google Scholar]
  19. Sikorski J., Moehle M., Wackernagel W. 2002a; Identification of complex composition, strong strain diversity and directional selection in local Pseudomonas stutzeri populations from marine sediment and soils. Environ Microbiol 4:465–476 [CrossRef]
    [Google Scholar]
  20. Sikorski J., Teschner N., Wackernagel W. 2002b; Highly different levels of natural transformation are associated with genomic subgroups within a local population of Pseudomonas stutzeri from soil. Appl Environ Microbiol 68:865–873 [CrossRef]
    [Google Scholar]
  21. Smibert R., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology . pp  607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  22. Stackebrandt E., Frederiksen W., Garrity G. M. 10 other authors 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef]
    [Google Scholar]
  23. Tamegai H., Li L., Masui N., Kato C. 1997; A denitrifying bacterium from the deep sea at 11,000-m depth. Extremophiles 1:207–211 [CrossRef]
    [Google Scholar]
  24. Ursing J. B., Rosselló-Mora R. A., García-Valdés E., Lalucat J. 1995; Taxonomic note: a pragmatic approach to the nomenclature of phenotypically similar genomic groups. Int J Syst Bacteriol 45:604 [CrossRef]
    [Google Scholar]
  25. Ziemke F., Hofle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
  26. Zumft W. G. 1997; Cell biology and molecular basis of denitrification. Microbiol Rev 61:533–616
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63535-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63535-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error