gen. nov., sp. nov., a new aerobic phototrophic bacterium isolated from dinoflagellates Free

Abstract

A novel group of aerobic anoxygenic phototrophic bacteria was isolated from marine dinoflagellates, and two strains were characterized in detail. Cells were Gram-negative cocci or ovoid rods and were motile by means of a single, polarly inserted flagellum. They were obligate aerobes requiring 1–7 % salinity. The optimal pH range for growth was 6·5–9·0 and the temperature optimum was 33 °C. The bacteria contained bacteriochlorophyll and spheroidenone as the only carotenoid. The absorption spectrum displayed two maxima in the infrared region at 804 and 868 nm. The distinct 804 nm band indicates the presence of light-harvesting system 2. Various organic carbon sources were assimilated, including many carboxylic acids, glucose and glycerol, but not butyrate, ethanol or methanol. Dissimilatory nitrate reduction was found for both strains. The physiological characteristics of the new strains resembled those of , but there were differences in the lipid composition. Based on 16S rRNA gene sequence analysis the new strains are relatively distant from other recognized species, with the closest relatives , and showing 94·1–93·4 % similarity. Similarity to was only 92·2 %, in line with numerous other species of the group. Therefore, it is proposed to classify the strains in a new genus and species within the clade, gen. nov., sp. nov. The type strain is DFL 12 (=DSM 16493=NCIMB 14021).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63511-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551089.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63511-0&mimeType=html&fmt=ahah

References

  1. Allgaier M., Uphoff H., Felske A., Wagner-Döbler I. 2003; Aerobic anoxygenic photosynthesis in Roseobacter clade bacteria from diverse marine habitats. Appl Environ Microbiol 69:5051–5059 [CrossRef]
    [Google Scholar]
  2. Béjà O., Suzuki M. T., Heidelberg J. F., Nelson W. C., Preston C. M., Hamada T., Eisen J. A., Fraser C. M., DeLong E. F. 2002; Unsuspected diversity among marine anoxygenic phototrophs. Nature 415:630–633 [CrossRef]
    [Google Scholar]
  3. Clayton R. K. 1963; Absorption spectra of photosynthetic bacteria and their chlorophylls. In Bacterial Photosynthesis pp  495–500 Edited by Gest H., San Pietro A., Vernon L. P. Yellow Springs: Antioch Press;
    [Google Scholar]
  4. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrica 48:621–626 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Golyshina O. V., Pivovarova T. A., Karavaiko G. I. 7 other authors 2000; Ferroplasma acidophilum gen. nov., sp. nov., an acidophilic, autotrophic, ferrous-iron-oxidizing, cell-wall-lacking, mesophilic member of the Ferroplasmaceae fam. nov., comprising a distinct lineage of the Archaea . Int J Syst Evol Microbiol 50997–1006 [CrossRef]
  8. Harashima K., Nakada H. 1983; Carotenoid and ubiquinone in aerobically grown cells of an aerobic photosynthetic bacterium, Erythrobacter species OCh 114. Agric Biol Chem 47:1057–1063 [CrossRef]
    [Google Scholar]
  9. Harashima K., Hayasaki J., Ikari T., Shiba T. 1980; O2-stimulated synthesis of bacteriochlorophyll and carotenoids in marine bacteria. Plant Cell Physiol 21:1283–1294
    [Google Scholar]
  10. Harashima K., Nakagawa M., Murata N. 1982; Photochemical activities of bacteriochlorophyll in aerobically grown cells of aerobic heterotrophs, Erythrobacter species (OCh 114) and Erythrobacter longus (OCh 101. Plant Cell Physiol 23:185–193
    [Google Scholar]
  11. Hiraishi A., Kuraishi H., Kawahara K. 2000; Emendation of the description of Blastomonas natatoria (Sly 1985 Sly and Cahill 1997) as an aerobic photosynthetic bacterium and reclassification of Erythromonas ursincola Yurkov et al . 1997 as Blastomonas ursincola comb. nov.. Int J Syst Evol Microbiol 50:1113–1118 [CrossRef]
    [Google Scholar]
  12. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  13. Kolber Z. S., Van Dover C. L., Niederman R. A., Falkowski P. G. 2000; Bacterial photosynthesis in surface waters of the open ocean. Nature 407:177–179 [CrossRef]
    [Google Scholar]
  14. Kolber Z. S., Plumley F. G., Lang A. S. 7 other authors 2001; Contribution of aerobic photoheterotrophic bacteria to the carbon cycle in the ocean. Science 292:2492–2495 [CrossRef]
    [Google Scholar]
  15. Labrenz M. 1999; Charakterisierung ausgesuchter antarktischer Bakterien: Ökologische Ansprüche von Stämmen aus einem hypersalinen See und Versuche zur Identifizierung potentiell anthropogener Bodenisolate . Doctoral dissertation Unversity of Kiel;
  16. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Braker G., Hirsch P. 1998; Antarctobacter heliothermus gen. nov., sp. nov., a budding bacterium from hypersaline and heliothermal Ekho Lake. Int J Syst Bacteriol 48:1363–1372 [CrossRef]
    [Google Scholar]
  17. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov., a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Parker C. T. Jr 11 other authors 1999; A new version of the RDP (Ribosomal Database Project. Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Pfennig N., Trüper H. G. 1992; The family Chromatiaceae . In The Prokaryotes , 2nd edn. pp  3200–3221 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin: Springer;
    [Google Scholar]
  21. Pinhassi J., Berman T. 2003; Differential growth response of colony-forming α - and γ-Proteobacteria in dilution culture and nutrient addition experiments from Lake Kinneret (Israel), the Eastern Mediterranean Sea, and the Gulf of Eilat. Appl Environ Microbiol 69:199–211 [CrossRef]
    [Google Scholar]
  22. Ruiz-Ponte C., Cilia V., Lambert C., Nicolas J. L. 1998; Roseobacter gallaeciensis sp. nov., a new marine bacterium isolated from rearings and collectors of the scallop Pecten maximus . Int J Syst Bacteriol 48:537–542 [CrossRef]
    [Google Scholar]
  23. Selje N., Simon M., Brinkhoff T. 2004; A newly discovered Roseobacter cluster in temperate and polar oceans. Nature 427:445–448 [CrossRef]
    [Google Scholar]
  24. Shiba T. 1991; Roseobacter litoralis gen. nov., sp. nov., and Roseobacter denitrificans sp. nov., aerobic pink-pigmented bacteria which contain bacteriochlorophyll a . Syst Appl Microbiol 14:140–145 [CrossRef]
    [Google Scholar]
  25. Shiba T., Simidu U. 1982; Erythrobacter longus gen. nov., sp. nov., an aerobic bacterium which contains bacteriochlorophyll a . Int J Syst Bacteriol 32211–217 [CrossRef]
  26. Shiba T., Simidu U., Taga N. 1979; Distribution of aerobic bacteria which contain bacteriochlorophyll a . Appl Environ Microbiol 38:43–45
    [Google Scholar]
  27. Shioi Y. 1986; Growth characteristics and substrate specifity of aerobic photosynthetic bacterium, Erythrobacter sp. (Och 114). Plant Cell Physiol 27:567–572
    [Google Scholar]
  28. Sydow U., Wohland P., Wolke I., Cypionka H. 2002; Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfononatronovibrio hydrogenovorans . Microbiology 148:853–860
    [Google Scholar]
  29. Tindall B. J. 1990a; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990b; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Wagner-Döbler I., Rheims H., Felske A., Pukall R., Tindall B. J. 2003; Jannaschia helgolandensis gen. nov., sp. nov., a novel abundant member of the marine Roseobacter clade from the North Sea. Int J Syst Evol Microbiol 53:731–738 [CrossRef]
    [Google Scholar]
  32. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  33. Yurkov V. V., Beatty J. T. 1998; Anaerobic anoxygenic phototrophic bacteria. Microbiol Mol Biol Rev 62:695–724
    [Google Scholar]
  34. Yurkov V. V., van Gemerden H. 1993; Impact of light/dark regimen on the growth rate, biomass formation and bacteriochlorophyll synthesis in Erythromicrobium hydrolyticum . Arch Microbiol 159:84–89 [CrossRef]
    [Google Scholar]
  35. Zubkov M. V., Fuchs B. M., Burkill P. H., Amann R. 2001; Comparison of cellular and biomass specific activities of dominant bacterioplankton groups in stratified waters of the Celtic Sea. Appl Environ Microbiol 67:5210–5218 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63511-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63511-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed