1887

Abstract

The crude-oil-degrading strain BAS3 represents a novel species, according to a taxonomic study. The 16S rRNA gene sequence of strain BAS3 was most similar to that of (IMSNU 14028; 99 % similarity), but the DNA–DNA relatedness to this type strain was only 32 %. The physiological properties of strain BAS3 differ from those of (IMSNU 14028) and other species of . The diamino acid in the cell-wall peptidoglycan of strain BAS3 is -diaminopimelic acid and the major menaquinone is MK-8(H). The name sp. nov. is proposed for the novel species, since its type strain, BAS3 (=DSM 16090=NCIMB 14004), is able to degrade crude oil.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63500-0
2005-07-01
2020-08-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551501.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63500-0&mimeType=html&fmt=ahah

References

  1. Behrendt U., Heesche-Wagner K. 1999; Formation of hydride-Meisenheimer complexes of picric acid (2,4,6-trinitrophenol) and 2,4-dinitrophenol during mineralization of picric acid by Nocardioides sp. strain CB 22-2. Appl Environ Microbiol 65:1372–1377
    [Google Scholar]
  2. Bosecker K., Teschner M., Wehner H. 1991; Biodegradation of crude oils. In Developments in Geochemistry 6: Diversity of Environmental Biogeochemistry pp  195–204 Edited by Berthelin J. Amsterdam: Elsevier;
    [Google Scholar]
  3. Burghardt F. 1992 Mikrobiologische Diagnostik Stuttgart: Thieme;
    [Google Scholar]
  4. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  7. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  8. Fedorak P. M., Westlake D. W. S. 1981; Microbial degradation of aromatics and saturates in Prudhoe Bay crude oil as determined by glass capillary gas chromatography. Can J Microbiol 27:432–443 [CrossRef]
    [Google Scholar]
  9. Felsenstein J. 1993 phylip (Phylogeny Inference Package), version 3.5c. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  10. Gerhardt P., Murray R. G. E., Wood W. A., Hodson R. E., Whitman W. B. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  11. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jobson A., Cook F. D., Westlake D. W. S. 1972; Microbial utilization of crude oil. Appl Microbiol 23:1082–1089
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  16. Kroppenstedt R. M. 1985; Fatty acid and menaquinone analysis of actinomycetes and related organisms. In Chemical Methods in Bacterial Systematics (SAB Technical Series) pp  173–199 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  17. Maidak B. L., Cole J. R., Parker C. T. Jr 10 other authors 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  18. Meier A., Kirschner P., Schröder K.-H., Wolters J., Kroppenstedt R. M., Böttger E. C. 1993; Mycobacterium intermedium sp. nov. Int J Syst Bacteriol 43:204–209 [CrossRef]
    [Google Scholar]
  19. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  20. Rajan J., Valli K., Perkins R. E., Sariaslani F. S., Barns S. M., Reysenbach A.-L., Rehm S., Ehringer M., Pace N. R. 1996; Mineralization of 2,4,6-trinitrophenol (picric acid): characterization and phylogenetic identification of microbial strain. J Ind Microbiol 16:319–324 [CrossRef]
    [Google Scholar]
  21. Rosenberg E. 2000 Hydrocarbon-oxidizing bacteria. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn. release 3.1, 20 January 2000. Edited by M. Dworkin et al New York: Springer; http://141.150.157.117:8080/prokPUB/chaprender/jsp/showchap.jsp?chapnum=247&initsec=04_03
    [Google Scholar]
  22. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  23. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  24. Van Hamme J. D., Singh A., Ward O. P. 2003; Recent advances in petroleum microbiology. Microbiol Mol Biol Rev 67:503–549 [CrossRef]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  26. Yi H., Chun J. 2004; Nocardioides ganghwensis sp. nov., isolated from tidal flat sediment. Int J Syst Evol Microbiol 54:1295–1299 [CrossRef]
    [Google Scholar]
  27. Yoon J.-H., Rhee S. K., Lee J. S., Park Y. H., Lee S. T. 1997; Nocardioides pyridinolyticus sp. nov., a pyridine-degrading bacterium isolated from the oxic zone of an oil shale column. Int J Syst Bacteriol 47:933–938 [CrossRef]
    [Google Scholar]
  28. Yoon J.-H., Cho Y.-G., Lee S. T., Suzuki K., Nakase T., Park Y.-H. 1999; Nocardioides nitrophenolicus sp. nov., a p -nitrophenol-degrading bacterium. Int J Syst Bacteriol 49:675–680 [CrossRef]
    [Google Scholar]
  29. Yoon J.-H., Kim I.-G., Kang K.H., Oh T.-K., Park Y.-H. 2004; Nocardioides aquiterrae sp. nov., isolated from a groundwater in Korea. Int J Syst Evol Microbiol 54:71–75 [CrossRef]
    [Google Scholar]
  30. Zengler K., Richnow H. H., Roselló-Mora R., Michaelis W., Widdel F. 1999; Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266–269 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63500-0
Loading

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error