sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate Free

Abstract

A novel alkaliphilic, sulfate-reducing bacterium was isolated from a syntrophic acetate-decomposing community enriched from samples of the soda lake Khadin, Tuva, Russia; the isolate was designated strain Z-7999. Cells of strain Z-7999 were vibrioid, Gram-negative, 0·4–0·5×1·0–2·5 μm and motile by means of a polar flagellum. The temperature range for growth was 15–40 °C, with an optimum of 35–38 °C. The pH range for growth was 6·7–10·3, with an optimum of pH 8·0–9·0. The NaCl concentration range for growth was 1–80 g l. The novel isolate was obligately anaerobic, was alkaliphilic with a broad pH range and had an obligate requirement for carbonate ions in the growth medium. In the presence of sulfate as electron acceptor, it grew with hydrogen, formate and lactate. It was not able to ferment sugars, organic acids, amino acids or peptides. During growth on formate, strain Z-7999 reduced sulfite and thiosulfate to sulfide. It was able to grow lithoheterotrophically with sulfate and formate when acetate was added as a carbon source for biosynthesis of biomass. The G+C content of the genomic DNA of strain Z-7999 was 56·5 mol%. Results of comparative 16S rRNA gene sequence analyses revealed that strain Z-7999 was part of the - and clustered with other members of the genus (similarity values of 95·2 and 95·3 % to and , respectively). DNA–DNA hybridization with was 37 %. On the basis of physiological and phylogenetic data, it is proposed that strain Z-7999 (=DSM 16749=VKM B-2329) should be placed in the genus as a representative of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63490-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551001.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63490-0&mimeType=html&fmt=ahah

References

  1. Garnova E. S., Zhilina T. N., Tourova T. P., Lysenko A. M. 2003; Anoxynatronum sibiricum gen. nov., sp. nov. – alkaliphilic saccharolytic anaerobe from cellulolytic community of Nizhnee Beloe (Transbaikal region). Extremophiles 7:213–220
    [Google Scholar]
  2. Gorlenko V. M., Namsaraev B. B., Kulyrova A. V., Zavarzina D. G., Zhilina T. N. 1999; The activity of sulfate-reducing bacteria in bottom sediments of soda lakes of the Southeastern Transbaikal Region.. Microbiology (English translation of Mikrobiologiya ) 68580–585
    [Google Scholar]
  3. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of the halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology (English translation of Mikrobiologiya ) 61563–567
    [Google Scholar]
  4. Kevbrin V. V., Zhilina T. N., Zavarzin G. A. 1999; Decomposition of cellulose by the anaerobic alkaliphilic microbial community. Microbiology (English translation of Mikrobiologiya ) 68601–609
    [Google Scholar]
  5. Kuever J., Könneke M., Galushko A., Drzyzga O. 2001; Reclassification of Desulfobacterium phenolicum as Desulfobacula phenolica comb.nov. and description of strain SaxT as Desulfotignum balticum gen. nov., sp. nov. Int J Syst Evol Microbiol 51:171–177
    [Google Scholar]
  6. Kuever J., Rainey F. A., Widdel F. 2005; Family Desulfonatronumaceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 Edited by Garrity G. M. New York: Springer; (in press
    [Google Scholar]
  7. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  8. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  9. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  10. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology (English translation of Mikrobiologiya ) 67123–131
    [Google Scholar]
  11. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332 [CrossRef]
    [Google Scholar]
  12. Rigby P. W. S., Dieckman M., Rhodes C., Berg P. 1977; Labeling deoxyribonucleic acid to high specific activity in vitro by nick-translation with DNA polymerase I. J Mol Biol 113:237–251 [CrossRef]
    [Google Scholar]
  13. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae . Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  14. Zavarzin G. A., Zhilina T. N. 2000; Anaerobic chemotrophic alkaliphiles. In Journey to Diverse Microbial Worlds pp  191–208 Edited by Seckbach J. Dordrecht: Kluwer Academic;
    [Google Scholar]
  15. Zavarzin G. A., Zhilina T. N., Pikuta E. V. 1996; Secondary anaerobes in haloalkaliphilic communities in lakes of Tuva. Microbiology (English translation of Mikrobiologiya) 65480–486
    [Google Scholar]
  16. Zhilina T. N. 2005 Genus Desulfonatronum . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2 Edited by Garrity G. M. New York: Springer; (in press
    [Google Scholar]
  17. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. V., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63490-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63490-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed