1887

Abstract

Two novel denitrifying bacteria, designated strains MI55-1 and E9I37-1, were isolated from deep-sea hydrothermal vent chimney structures at the Iheya North hydrothermal field in the Mid-Okinawa Trough, Japan. Both isolates were strict chemolithoautotrophs growing by respiratory nitrate reduction with H, forming N as a metabolic product. Oxygen (at low concentrations) could serve as an alternative electron acceptor for growth of the isolates. Growth of strain MI55-1 was observed at temperatures between 40 and 57 °C (optimum, 55 °C; doubling time, 2 h), at pH values between 5·4 and 6·9 (optimum, pH 6·4) and in the presence of between 1·5 and 4·0 % (w/v) NaCl (optimum, 2·5 %). Growth of strain E9I37-1 was observed at temperatures between 28 and 40 °C (optimum, 37 °C; doubling time, 2·5 h), at pH values between 5·6 and 7·6 (optimum, pH 7·0) and in the presence of between 1·5 and 3·5 % (w/v) NaCl (optimum, 3·0 %). The G+C contents of the genomic DNA of strains MI55-1 and E9I37-1 were 29·6 and 35·5 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains MI55-1 and E9I37-1 belonged to groups A and F of the -, but that they had distant phylogenetic relationships with any species, within the phylogenetic groups, that had validly published names (sequence similarities were less than 91 %). On the basis of the physiological and molecular characteristics of the novel isolates, it is proposed that they should each be classified in a novel genus: gen. nov., sp. nov., with MI55-1 (=JCM 12459=DSM 16512) as the type strain, and gen. nov., sp. nov., with E9I37-1 (=JCM 12458=DSM 16511) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63480-0
2005-03-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550925.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63480-0&mimeType=html&fmt=ahah

References

  1. Alain K., Querellou J., Lesongeur F, Pignet P, Crassous P, Raguénès G., Cueff V, Cambon-Bonavita M.-L. 2002; Caminibacter hydrogeniphilus gen. nov., sp. nov. a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52:1317–1323 [CrossRef]
    [Google Scholar]
  2. Angert E. R., Northup D. E., Reysenbach A.-L., Peek A. S., Goebel B. M., Pace N. R. 1998; Molecular phylogenetic analysis of a bacterial community in Sulphur River. Parker Cave, Kentucky: Am Mineral 83, 1583–1592
  3. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  4. Bano N., Hollibaugh J. T. 2002; Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68:505–518 [CrossRef]
    [Google Scholar]
  5. Campbell B. J., Stein J. L., Cary S. C. 2003; Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana , a hydrothermal vent polychaete. Appl Environ Microbiol 69:5070–5078 [CrossRef]
    [Google Scholar]
  6. Chiba H., Kataoka S., Ishibashi J., Yamanaka T. 2000; Distribution of hydrothermal vents, fluid chemistry, and phase separation at the Iheya North seafloor hydrothermal system. Mid-Okinawa Trough. Eos Trans AGU Fall Meet Suppl 81 WP86 (Abstract
    [Google Scholar]
  7. Corre E., Reysenbach A.-L., Prieur D. 2001; Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205:329–335
    [Google Scholar]
  8. Engberg J., On S. L., Harrington C. S., Gerner-Smidt P. 2000; Prevalence of Campylobacter , Arcobacter , Helicobacter , and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J Clin Microbiol 38:286–291
    [Google Scholar]
  9. Gevertz D., Telang A. J., Voordouw G., Jenneman G. E. 2000; Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66:2491–2501 [CrossRef]
    [Google Scholar]
  10. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K. 2001; Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  43–48 Edited by Boone D. R., Castenholz R. W., Garrity G. M. London: Springer;
    [Google Scholar]
  11. Goffredi S. K., Warén A., Orphan V. J., Van Dover C. L., Vrijenhoek R. C. 2004; Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70:3082–3090 [CrossRef]
    [Google Scholar]
  12. Haddad A., Camacho F., Durand P., Cary S. C. 1995; Phylogenetic characterization of the epizootic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana . Appl Environ Microbiol 61:1679–1687
    [Google Scholar]
  13. Inagaki F., Sakihama Y., Inoue A., Kato C., Horikoshi K. 2002; Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4:277–286 [CrossRef]
    [Google Scholar]
  14. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2003; Sulfurimonas autotrophica gen. nov. sp. nov. a novel sulfur-oxidizing ε -proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int J Syst Evol Microbiol 531801–1805 [CrossRef]
    [Google Scholar]
  15. Inagaki F., Takai K., Nealson K. H., Horikoshi K. 2004; Sulfurovum lithotrophicum gen. nov. sp. nov. a novel sulfur-oxidizing chemolithoautotroph within the ε - Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 541477–1482 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  18. Lauerer G., Kristjansson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  19. Li L., Kato C., Horikoshi K. 1998; Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8:659–677
    [Google Scholar]
  20. López-García P., Gaill F., Moreira D. 2002; Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila . Environ Microbiol 4:204–215 [CrossRef]
    [Google Scholar]
  21. López-García P., Duperron S., Philippot P., Foriel J., Susini J., Moreira D. 2003; Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at Mid-Atlantic Ridge. Environ Microbiol 5:961–976 [CrossRef]
    [Google Scholar]
  22. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  23. Miroshnichenko M. L., Kostrikina N. A., L'Haridon S., Jeanthon C., Hippe H., Stackebrandt E., Bonch-Osmolovskaya E. A. 2002; Nautilia lithotrophica gen. nov., sp. nov. a thermophilic sulfur-reducing ε -proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52:1299–1304 [CrossRef]
    [Google Scholar]
  24. Miroshnichenko M. L., L'Haridon S., Schumann P., Spring S., Bonch-Osmolovskaya E. A., Jeanthon C., Stackebrandt E. 2004; Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘ Epsilonproteobacteria ’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54:41–45 [CrossRef]
    [Google Scholar]
  25. Nakagawa S., Takai K., Horikoshi K., Sako Y. 2003; Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:863–869 [CrossRef]
    [Google Scholar]
  26. Nakagawa S., Nakamura S., Inagaki F., Takai K., Shirai N., Sako Y. 2004; Hydrogenivirga caldilitoris gen. nov., sp. nov. a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54:2079–2084 [CrossRef]
    [Google Scholar]
  27. Nakagawa S., Inagaki F., Takai K., Horikoshi K., Sako Y. 2005; Thioreductor micantisoli gen. nov. sp. nov. a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε - Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55599–605 [CrossRef]
    [Google Scholar]
  28. On S. L. W. 2001; Taxonomy of Campylobacter , Arcobacter , Helicobacter and related bacteria: current status, future prospects and immediate concerns. J Appl Microbiol 90:1S–15S [CrossRef]
    [Google Scholar]
  29. Polz M. F., Cavanaugh C. M. 1995; Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92:7232–7236 [CrossRef]
    [Google Scholar]
  30. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  31. Reysenbach A.-L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  32. Rudolph C., Wanner G., Huber R. 2001; Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67:2336–2344 [CrossRef]
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  35. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  36. Scholz-Muramatsu H., Neumann A., Meßmer M., Moore E., Diekert G. 1995; Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 16348–56 [CrossRef]
    [Google Scholar]
  37. Snaider J., Amann R., Huber I., Ludwig W., Scheifer K.-H. 1997; Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63:2884–2896
    [Google Scholar]
  38. Swofford D. L. 2000 paup* – Phylogenetic Analysis Using Parsimony and Other Methods, version 4 Sunderland, MA: Sinauer;
    [Google Scholar]
  39. Takai K., Komatsu T., Ingaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  40. Takai K., Inagaki F., Nakagawa S., Hirayama H., Nunoura T., Sako Y., Nealson K. H., Horikoshi K. 2003a; Isolation and phylogenetic diversity of members of previously uncultivated epsilon- Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218:167–174
    [Google Scholar]
  41. Takai K., Nakagawa S., Sako Y., Horikoshi K. 2003b; Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53:1947–1954 [CrossRef]
    [Google Scholar]
  42. Takai K., Nealson K. H., Horikoshi K. 2004; Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε - Proteobacteria , isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54:25–32 [CrossRef]
    [Google Scholar]
  43. Takai K., Hirayama H., Nakagawa T., Suzuki Y., Nealson K. H., Horikoshi K. 2005; Lebetimonas acidiphila gen. nov. sp. nov. a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘ Epsilonproteobacteria ’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55183–189 [CrossRef]
    [Google Scholar]
  44. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  45. Taylor C. D., Wirsen C. O., Gaill F. 1999; Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65:2253–2255
    [Google Scholar]
  46. Wirsen C. O., Jannasch H. W., Molyneaux S. J. 1993; Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J Geophys Res 98:9693–9703 [CrossRef]
    [Google Scholar]
  47. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63480-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63480-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error