1887

Abstract

Two novel denitrifying bacteria, designated strains MI55-1 and E9I37-1, were isolated from deep-sea hydrothermal vent chimney structures at the Iheya North hydrothermal field in the Mid-Okinawa Trough, Japan. Both isolates were strict chemolithoautotrophs growing by respiratory nitrate reduction with H, forming N as a metabolic product. Oxygen (at low concentrations) could serve as an alternative electron acceptor for growth of the isolates. Growth of strain MI55-1 was observed at temperatures between 40 and 57 °C (optimum, 55 °C; doubling time, 2 h), at pH values between 5·4 and 6·9 (optimum, pH 6·4) and in the presence of between 1·5 and 4·0 % (w/v) NaCl (optimum, 2·5 %). Growth of strain E9I37-1 was observed at temperatures between 28 and 40 °C (optimum, 37 °C; doubling time, 2·5 h), at pH values between 5·6 and 7·6 (optimum, pH 7·0) and in the presence of between 1·5 and 3·5 % (w/v) NaCl (optimum, 3·0 %). The G+C contents of the genomic DNA of strains MI55-1 and E9I37-1 were 29·6 and 35·5 mol%, respectively. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains MI55-1 and E9I37-1 belonged to groups A and F of the -, but that they had distant phylogenetic relationships with any species, within the phylogenetic groups, that had validly published names (sequence similarities were less than 91 %). On the basis of the physiological and molecular characteristics of the novel isolates, it is proposed that they should each be classified in a novel genus: gen. nov., sp. nov., with MI55-1 (=JCM 12459=DSM 16512) as the type strain, and gen. nov., sp. nov., with E9I37-1 (=JCM 12458=DSM 16511) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63480-0
2005-03-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550925.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63480-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-L. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Angert, E. R., Northup, D. E., Reysenbach, A.-L., Peek, A. S., Goebel, B. M. & Pace, N. R. ( 1998; ). Molecular phylogenetic analysis of a bacterial community in Sulphur River, Parker Cave, Kentucky. Am Mineral 83, 1583–1592.
    [Google Scholar]
  3. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  4. Bano, N. & Hollibaugh, J. T. ( 2002; ). Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl Environ Microbiol 68, 505–518.[CrossRef]
    [Google Scholar]
  5. Campbell, B. J., Stein, J. L. & Cary, S. C. ( 2003; ). Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl Environ Microbiol 69, 5070–5078.[CrossRef]
    [Google Scholar]
  6. Chiba, H., Kataoka, S., Ishibashi, J. & Yamanaka, T. ( 2000; ). Distribution of hydrothermal vents, fluid chemistry, and phase separation at the Iheya North seafloor hydrothermal system, Mid-Okinawa Trough. Eos Trans AGU Fall Meet Suppl 81, WP86 (Abstract).
    [Google Scholar]
  7. Corre, E., Reysenbach, A.-L. & Prieur, D. ( 2001; ). Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. FEMS Microbiol Lett 205, 329–335.
    [Google Scholar]
  8. Engberg, J., On, S. L., Harrington, C. S. & Gerner-Smidt, P. ( 2000; ). Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J Clin Microbiol 38, 286–291.
    [Google Scholar]
  9. Gevertz, D., Telang, A. J., Voordouw, G. & Jenneman, G. E. ( 2000; ). Isolation and characterization of strains CVO and FWKOB, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl Environ Microbiol 66, 2491–2501.[CrossRef]
    [Google Scholar]
  10. Gillis, M., Vandamme, P., De Vos, P., Swings, J. & Kersters, K. ( 2001; ). Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, pp. 43–48. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. London: Springer.
  11. Goffredi, S. K., Warén, A., Orphan, V. J., Van Dover, C. L. & Vrijenhoek, R. C. ( 2004; ). Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70, 3082–3090.[CrossRef]
    [Google Scholar]
  12. Haddad, A., Camacho, F., Durand, P. & Cary, S. C. ( 1995; ). Phylogenetic characterization of the epizootic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl Environ Microbiol 61, 1679–1687.
    [Google Scholar]
  13. Inagaki, F., Sakihama, Y., Inoue, A., Kato, C. & Horikoshi, K. ( 2002; ). Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ Microbiol 4, 277–286.[CrossRef]
    [Google Scholar]
  14. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  15. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54, 1477–1482.[CrossRef]
    [Google Scholar]
  16. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  17. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  18. Lauerer, G., Kristjansson, J. K., Langworthy, T. A., König, H. & Stetter, K. O. ( 1986; ). Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8, 100–105.[CrossRef]
    [Google Scholar]
  19. Li, L., Kato, C. & Horikoshi, K. ( 1998; ). Bacterial diversity in deep-sea sediments from different depths. Biodivers Conserv 8, 659–677.
    [Google Scholar]
  20. López-García, P., Gaill, F. & Moreira, D. ( 2002; ). Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila. Environ Microbiol 4, 204–215.[CrossRef]
    [Google Scholar]
  21. López-García, P., Duperron, S., Philippot, P., Foriel, J., Susini, J. & Moreira, D. ( 2003; ). Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at Mid-Atlantic Ridge. Environ Microbiol 5, 961–976.[CrossRef]
    [Google Scholar]
  22. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  23. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  24. Miroshnichenko, M. L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. & Stackebrandt, E. ( 2004; ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54, 41–45.[CrossRef]
    [Google Scholar]
  25. Nakagawa, S., Takai, K., Horikoshi, K. & Sako, Y. ( 2003; ). Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 863–869.[CrossRef]
    [Google Scholar]
  26. Nakagawa, S., Nakamura, S., Inagaki, F., Takai, K., Shirai, N. & Sako, Y. ( 2004; ). Hydrogenivirga caldilitoris gen. nov., sp. nov., a novel extremely thermophilic, hydrogen- and sulfur-oxidizing bacterium from a coastal hydrothermal field. Int J Syst Evol Microbiol 54, 2079–2084.[CrossRef]
    [Google Scholar]
  27. Nakagawa, S., Inagaki, F., Takai, K., Horikoshi, K. & Sako, Y. ( 2005; ). Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the ε-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 55, 599–605.[CrossRef]
    [Google Scholar]
  28. On, S. L. W. ( 2001; ). Taxonomy of Campylobacter, Arcobacter, Helicobacter and related bacteria: current status, future prospects and immediate concerns. J Appl Microbiol 90, 1S–15S.[CrossRef]
    [Google Scholar]
  29. Polz, M. F. & Cavanaugh, C. M. ( 1995; ). Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc Natl Acad Sci U S A 92, 7232–7236.[CrossRef]
    [Google Scholar]
  30. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  31. Reysenbach, A.-L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  32. Rudolph, C., Wanner, G. & Huber, R. ( 2001; ). Natural communities of novel Archaea and Bacteria growing in cold sulfurous springs with a string-of-pearls-like morphology. Appl Environ Microbiol 67, 2336–2344.[CrossRef]
    [Google Scholar]
  33. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  34. Sako, Y., Takai, K., Ishida, Y., Uchida, A. & Katayama, Y. ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46, 1099–1104.[CrossRef]
    [Google Scholar]
  35. Sako, Y., Nakagawa, S., Takai, K. & Horikoshi, K. ( 2003; ). Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 59–65.[CrossRef]
    [Google Scholar]
  36. Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E. & Diekert, G. ( 1995; ). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163, 48–56.[CrossRef]
    [Google Scholar]
  37. Snaider, J., Amann, R., Huber, I., Ludwig, W. & Scheifer, K.-H. ( 1997; ). Phylogenetic analysis and in situ identification of bacteria in activated sludge. Appl Environ Microbiol 63, 2884–2896.
    [Google Scholar]
  38. Swofford, D. L. ( 2000; ). paup* – Phylogenetic Analysis Using Parsimony and Other Methods, version 4. Sunderland, MA: Sinauer.
  39. Takai, K., Komatsu, T., Ingaki, F. & Horikoshi, K. ( 2001; ). Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67, 3618–3629.[CrossRef]
    [Google Scholar]
  40. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  41. Takai, K., Nakagawa, S., Sako, Y. & Horikoshi, K. ( 2003b; ). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53, 1947–1954.[CrossRef]
    [Google Scholar]
  42. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 25–32.[CrossRef]
    [Google Scholar]
  43. Takai, K., Hirayama, H., Nakagawa, T., Suzuki, Y., Nealson, K. H. & Horikoshi, K. ( 2005; ). Lebetimonas acidiphila gen. nov., sp. nov., a novel thermophilic, acidophilic, hydrogen-oxidizing chemolithoautotroph within the ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal fumarole in the Mariana Arc. Int J Syst Evol Microbiol 55, 183–189.[CrossRef]
    [Google Scholar]
  44. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  45. Taylor, C. D., Wirsen, C. O. & Gaill, F. ( 1999; ). Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl Environ Microbiol 65, 2253–2255.
    [Google Scholar]
  46. Wirsen, C. O., Jannasch, H. W. & Molyneaux, S. J. ( 1993; ). Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites. J Geophys Res 98, 9693–9703.[CrossRef]
    [Google Scholar]
  47. Zillig, W., Holz, I., Janekovic, D. & 7 other authors ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63480-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63480-0
Loading

Data & Media loading...

Supplements

vol. , part 2, pp. 925 - 933

Effects of temperature (A), pH (B), NaCl concentration (C) and O concentration in the headspace (D) on the growth of MI55-1 (filled circles) and E9I37-1 (filled triangles). [PDF](87 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error