1887

Abstract

Bacteria called ‘’ are endosymbionts of the plant-feeding whitefly and scale insect . In the gut of , these bacteria live within bacteriocyte cells that are transmitted directly from the parent to oocytes. Whiteflies cause serious economic damage to many agricultural crops; fecundity and host range are less than those of , possibly due to the presence of this endosymbiont. The endosymbiont has been characterized using electron microscopy and DNA analysis but has not been isolated or propagated outside of insects. The present study compared sequences for 11 endosymbiont genes to genomic data for chlamydial families , and and to 16S rRNA gene signature sequences from 330 chlamydiae. We concluded that it was appropriate to propose ‘ Fritschea bemisiae’ strain Falk and ‘ Fritschea eriococci’ strain Elm as members of the family in the .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63454-0
2005-07-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551581.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63454-0&mimeType=html&fmt=ahah

References

  1. Brinkman F. S. L., Blanchard J. L., Cherkasov A. 11 other authors 2002; Evidence that plant-like genes in Chlamydia species reflect an ancestral relationship between Chlamydiaceae , cyanobacteria, and the chloroplast. Genome Res 12:1159–1167 [CrossRef]
    [Google Scholar]
  2. Chua K. B. 2003; A novel approach for collecting samples from fruit bats for isolation of infectious agents. Microbes Infect 5:487–490 [CrossRef]
    [Google Scholar]
  3. Chua P. K. B., Corkill J. E., Hooi P. S., Cheng S. C., Winstanley C., Hart C. A. 2005; Isolation of Waddlia malaysiensis , a novel intracellular bacterium, from fruit bat ( Eonycteris spelaea . Emerg Infect Dis 11:271–277 [CrossRef]
    [Google Scholar]
  4. Clark M. A., Baumann L., Munson M. A., Baumann P., Campbell B. C., Duffus J. E., Osborne L. S., Moran N. A. 1992; The eubacterial endosymbionts of whiteflies (Homoptera: Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr Microbiol 25:119–123 [CrossRef]
    [Google Scholar]
  5. Corsaro D., Venditti D., Le Faou A., Guglielmetti P., Valassina M. 2001; A new chlamydia-like 16S rDNA sequence from a clinical sample. Microbiology 147:515–516
    [Google Scholar]
  6. Corsaro D., Venditti D., Valassina M. 2002; New chlamydial lineages from freshwater samples. Microbiology 148:343–344
    [Google Scholar]
  7. Costa H. S., Westcot D. M., Ullman D. E., Rosell R., Brown J. K., Johnson M. W. 1995; Morphological variation in Bemisia endosymbionts. Protoplasma 189:194–202 [CrossRef]
    [Google Scholar]
  8. Costa H. S., Toscano N. C., Henneberry T. J. 1996; Mycetocyte inclusion in the oocytes of Bemisia argentifolii (Homoptera: Aleyrodidae). Ann Entomol Soc Am 89:694–699 [CrossRef]
    [Google Scholar]
  9. Devereaux L. N., Polkinghorne A., Meijer A., Timms P. 2003; Molecular evidence for novel chlamydial infections in the koala ( Phascolarctos cinereus ). Syst Appl Microbiol 26:245–253 [CrossRef]
    [Google Scholar]
  10. Duchaud E., Rusniok C., Frangeul L. 23 other authors 2003; The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens . Nat Biotechnol 21:1307–1313 [CrossRef]
    [Google Scholar]
  11. Everett K. D. E., Bush R. M., Andersen A. A. 1999a; Emended description of the order Chlamydiales , proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov. each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae , including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49:415–440 [CrossRef]
    [Google Scholar]
  12. Everett K. D. E., Kahane S., Bush R. M., Friedman M. G. 1999b; An unspliced group I intron in 23S rRNA links Chlamydiales , chloroplasts, and mitochondria. J Bacteriol 181:4734–4740
    [Google Scholar]
  13. Fritsche T. R., Horn M., Wagner M., Herwig R. P., Schleifer K.-H., Gautom R. K. 2000; Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl Environ Microbiol 66:2613–2619 [CrossRef]
    [Google Scholar]
  14. Greub G., Raoult D. 2002; Parachlamydiaceae : potential emerging pathogens. Emerg Infect Dis 8:625–630
    [Google Scholar]
  15. Greub G., Raoult D. 2003; History of the ADP/ATP-translocase-encoding gene, a parasitism gene transferred from a Chlamydiales ancestor to plants 1 billion years ago. Appl Environ Microbiol 69:5530–5535 [CrossRef]
    [Google Scholar]
  16. Henning K., Schares G., Granzow H., Polster U., Hartmann M., Hotzel H., Sachse K., Peters M., Rauser M. 2002; Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. Vet Microbiol 85:285–292 [CrossRef]
    [Google Scholar]
  17. Horn M., Wagner M. 2001; Evidence for additional genus-level diversity of Chlamydiales in the environment. FEMS Microbiol Lett 204:71–74 [CrossRef]
    [Google Scholar]
  18. Horn M., Collingro A., Schmitz-Esser S. 10 other authors 2004; Illuminating the evolutionary history of chlamydiae. Science 304:728–730 [CrossRef]
    [Google Scholar]
  19. Kahane S., Dvoskin B., Mathias M., Friedman M. G. 2001; Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl Environ Microbiol 67:4789–4795 [CrossRef]
    [Google Scholar]
  20. Kalman S., Mitchell W., Marathe R. 7 other authors 1999; Comparative genomes of Chlamydia pneumoniae and C. trachomatis . Nat Genet 21:385–389 [CrossRef]
    [Google Scholar]
  21. Kaplan C. W., Kitts C. L. 2004; Bacterial succession in a petroleum land treatment unit. Appl Environ Microbiol 70:1777–1786 [CrossRef]
    [Google Scholar]
  22. Kostanjšek R., Štrus J., Drobne D., Avguštin G. 2004; Candidatus Rhabdochlamydia porcellionis’, an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda. Int J Syst Evol Microbiol 54:543–549 [CrossRef]
    [Google Scholar]
  23. Labrenz M., Banfield J. F. 2004; Sulfate-reducing bacteria-dominated biofilms that precipitate ZnS in a subsurface circumneutral-pH mine drainage system. Microb Ecol 47:205–217
    [Google Scholar]
  24. Meijer A., Ossewaarde J. M. 2002; Description of a wider diversity within the Order Chlamydiales than currently classified. In Proceedings of the Tenth International Conference on Human Chlamydial Infections Antalya, Turkey: Edited by S R. Stephens et al San Francisco: International;, Chlamydia Symposium.
    [Google Scholar]
  25. Meijer A., Roholl P. J. M., Ossewaarde J. M. 2000; Use of the broad range PCR assay for the identification and classification of bacteria in the order Chlamydiales . In Proceedings of the Fourth Meeting of the European Society for Chlamydia Research p– 9 Edited by Saikku P. Bologna: Universitas Helsingiensis;
    [Google Scholar]
  26. Murray R. G. E., Schleifer K.-H. 1994; Taxonomic notes: a proposal for recording the properties of putative taxa of procaryotes. Int J Syst Bacteriol 44:174–176 [CrossRef]
    [Google Scholar]
  27. Ossewaarde J. M., Meijer A. 1999; Molecular evidence for the existence of additional members of the order Chlamydiales . Microbiology 145:411–417 [CrossRef]
    [Google Scholar]
  28. Read T. D., Brunham R. C., Shen C. 22 other authors 2000; Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res 28:1397–1406 [CrossRef]
    [Google Scholar]
  29. Read T. D., Myers G. S., Brunham R. C. 18 other authors 2003; Genome sequence of Chlamydophila caviae ( Chlamydia psittaci GPIC): examining the role of niche-specific genes in the evolution of the Chlamydiaceae . Nucleic Acids Res 31:2134–2147 [CrossRef]
    [Google Scholar]
  30. Roehrdanz R. L., Degrugillier M. E., Black W. C. IV 2002; Novel rearrangements of arthropod mitochondrial DNA detected with long-PCR: applications to arthropod phylogeny and evolution. Mol Biol Evol 19:841–849 [CrossRef]
    [Google Scholar]
  31. Stephens R. S., Kalman S., Lammel C. 9 other authors 1998; Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis . Science 282:754–759 [CrossRef]
    [Google Scholar]
  32. Thao M. L., Baumann P. 2004a; Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70:3401–3406 [CrossRef]
    [Google Scholar]
  33. Thao M. L., Baumann P. 2004b; Evidence for multiple acquisition of Arsenophonus by whitefly species (Sternrrhyncha: Aleyrodidae. Curr Microbiol 48:140–144 [CrossRef]
    [Google Scholar]
  34. Thao M. L., Baumann L., Hess J. M., Falk B. W., Ng J. C., Gullan P. J., Baumann P. 2003; Phylogenetic evidence from two new insect-associated chlamydia of the family Simkaniaceae . Curr Microbiol 47:46–50 [CrossRef]
    [Google Scholar]
  35. von Bomhard W., Polkinghorne A., Lu Z. H., Vaughan L., Vogtlin A., Zimmermann D. R., Spiess B., Pospischil A. 2003; Detection of novel chlamydiae in cats with ocular disease. Am J Vet Res 64:1421–1428 [CrossRef]
    [Google Scholar]
  36. Wernegreen J. J. 2002; Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet 3:850–861 [CrossRef]
    [Google Scholar]
  37. Zchori-Fein E., Brown J. K. 2002; Diversity of prokaryotes associated with Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae). Ann Entomol Soc Am 95:711–718 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63454-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63454-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error