sp. nov., a novel rhamnolipid-producing bacterium Free

Abstract

A Gram-positive, non-motile, non-spore-forming coccus (strain JS) was isolated from kimchi (a traditional Korean food) and investigated using a polyphasic taxonomic approach. The 16S rRNA gene sequence similarity between strain JS and its closest relative, IAM 1676, was 98·1 %. The level of DNA–DNA relatedness between the two strains was 9·7 %. Strain JS had a DNA G+C content of 38·3 % and a cellular fatty acid profile containing 16 : 0, 18 : 1 and cyclo fatty acids. Phylogenetic data and genomic and phenotypic features demonstrated that strain JS represents a novel species, for which the name sp. nov. is proposed. The type strain is JS (=KCTC 3924=DSM 16501=LMG 22864).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63448-0
2005-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/4/ijs551409.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63448-0&mimeType=html&fmt=ahah

References

  1. Buck J. D. 1982; Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  2. Chung W., Hancock R. E. W. 2000; Action of lysozyme and nisin mixtures against lactic acid bacteria. Int J Food Microbiol 60:25–32 [CrossRef]
    [Google Scholar]
  3. Collins M. D., Williams A. M., Wallbanks S. 1990; The phylogeny of Aerococcus and Pediococcus as determined by 16S rRNA sequence analysis: description of Tetragenococcus gen. nov. FEMS Microbiol Lett 70:255–262
    [Google Scholar]
  4. Ennahar S., Cai Y. 2005; Biochemical and genetic evidence for the transfer of Enterococcus solitarius Collins et al . 1989 to the genus Tetragenococcus as Tetragenococcus solitarius comb. nov. Int J Syst Evol Microbiol 55:589–592 [CrossRef]
    [Google Scholar]
  5. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in micro-dilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  6. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  119–166 Edited by Garrity G. M., Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  7. Haba E., Espuny M. J., Busquets M., Manresa A. 2000; Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379–387 [CrossRef]
    [Google Scholar]
  8. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  9. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  10. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press;
    [Google Scholar]
  11. Kosaric N. 1987; Integrated process for continuous rhamnolipid biosynthesis. Biosurfactants production, properties, applications. In Surfactant Science Series vol 48 pp  157–173 New York: Marcel Dekker;
    [Google Scholar]
  12. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  14. Rahman K. S. M., Rahman T. J., McClean S., Marchant R., Banat I. M. 2002; Rhamnolipid biosurfactant production by strains of Pseudomonas aeruginosa using low-cost raw materials. Biotechnol Prog 18:1277–1281 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Sasser M. 1990; Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101 . Newark, DE: MIDI;
    [Google Scholar]
  17. Satomi M., Kimura B., Mizoi M., Sato T., Fujii T. 1997; Tetragenococcus muriaticus sp. nov., a new moderately halophilic lactic acid bacterium isolated from fermented squid liver sauce. Int J Syst Bacteriol 47:832–836 [CrossRef]
    [Google Scholar]
  18. Schleifer K. H. 1985; Analysis of the chemical composition and primary structure of murein. Methods Microbiol 18:123–156
    [Google Scholar]
  19. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  22. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
  23. Zajic J., Seffens W. 1984; Biosurfactants. Crit Rev Biotechnol 12:87–107
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63448-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63448-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed