sp. nov., a cell-fusing hyperthermophilic archaeon from Suiyo Seamount Free

Abstract

A cell-fusing hyperthermophilic archaeon was isolated from hydrothermal fluid obtained from Suiyo Seamount of the Izu-Bonin Arc. The isolate, TS1, is an irregular coccus, usually 0·5–2 μm in diameter and motile with a polar tuft of flagella. Cells in the exponential phase of growth fused at room temperature in the presence of DNA-intercalating dye to become as large as 5 μm in diameter. Fused cells showed dark spots that moved along in the cytoplasm. Large cells with a similar appearance were also observed upon culture at 87 °C, suggesting the occurrence of similar cell fusions during growth. Transmission electron microscopy revealed that cells in the exponential phase possessed a thin and electron-lucent cell envelope that could be lost subsequently during culture. The fragile cell envelope must be related to cell fusion. The cells grew at 57–90 °C, pH 5·2–8·7 and at NaCl concentrations of 1·5–4·5 %, with the optima being 87 °C, pH 6·5 and 2·5 % NaCl. The isolate was an anaerobic chemo-organotroph that grew on either yeast extract or tryptone as the sole growth substrate. The genomic DNA G+C content was 53·9 mol%. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the isolate was closely related to species. However, no significant DNA–DNA hybridization was observed between genomic DNA of strain TS1 and phylogenetically related species. We propose that isolate TS1 represents a novel species, sp. nov., with the name reflecting the cell fusion activity observed in the strain. The type strain is TS1 (=JCM 12540=DSM 16538).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63432-0
2005-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2507.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63432-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Canganella F., Jones W. J., Gambacorta A., Antranikian G. 1998; Thermococcus guaymasensis sp. nov. and Thermococcus aggregans sp. nov., two novel thermophilic archaea isolated from the Guaymas Basin hydrothermal vent site. Int J Syst Bacteriol 48:1181–1185 [CrossRef]
    [Google Scholar]
  4. Darland G., Brock T. D., Samsonoff W., Conti S. F. 1970; A thermophilic, acidophilic mycoplasma isolated from a coal refuse pile. Science 170:1416–1418 [CrossRef]
    [Google Scholar]
  5. Dirmeier R., Keller M., Hafenbradl D., Braun F.-J., Rachel R., Burggraf S., Stetter K. O. 1998; Thermococcus acidaminovorans sp. nov., a new hyperthermophilic alkalophilic archaeon growing on amino acids. Extremophiles 2:109–114 [CrossRef]
    [Google Scholar]
  6. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  7. Fiala G., Stetter K. O. 1986; Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100 °C. Arch Microbiol 145:56–61 [CrossRef]
    [Google Scholar]
  8. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119 [CrossRef]
    [Google Scholar]
  9. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J. R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626 [CrossRef]
    [Google Scholar]
  10. González J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164 [CrossRef]
    [Google Scholar]
  11. González J. M., Sheckells D., Viebahn M., Krupatkina D., Borges K. M., Robb F. T. 1999; Thermococcus waiotapuensis sp. nov., an extremely thermophilic archaeon isolated from a freshwater hot spring. Arch Microbiol 172:95–101 [CrossRef]
    [Google Scholar]
  12. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [CrossRef]
    [Google Scholar]
  13. Grote R., Li L., Tamaoka J., Kato C., Horikoshi K., Antranikian G. 1999; Thermococcus siculi sp. nov., a novel hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent at the Mid-Okinawa Trough. Extremophiles 3:55–62 [CrossRef]
    [Google Scholar]
  14. Honda D., Inouye I. 2002; Ultrastructure and taxonomy of a marine photosynthetic stramenopile Phaeomonas parva gen. et sp. nov. (Pinguiophyceae) with emphasis on the flagellar apparatus architecture. Phycol Res 50:75–89 [CrossRef]
    [Google Scholar]
  15. Horn C., Paulmann B., Kerlen G., Junker N., Huber H. 1999; In vivo observation of cell division of anaerobic hyperthermophiles by using a high-intensity dark-field microscope. J Bacteriol 181:5114–5118
    [Google Scholar]
  16. Huber R., Stöhr J., Hohenhaus S., Rachel R., Burggraf S., Jannasch H. W., Stetter K. O. 1995; Thermococcus chitonophagus sp. nov., a novel, chitin-degrading, hyperthermophilic archaeum from a deep-sea hydrothermal vent environment. Arch Microbiol 164:255–264 [CrossRef]
    [Google Scholar]
  17. Jolivet E., L'Haridon S., Corre E., Forterre P., Prieur D. 2003; Thermococcus gammatolerans sp. nov., a hyperthermophilic archaeon from a deep-sea hydrothermal vent that resists ionizing radiation. Int J Syst Evol Microbiol 53:847–851 [CrossRef]
    [Google Scholar]
  18. Katayama-Fujimura Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  19. Kobayashi T., Kwak Y. S., Akiba T., Kudo T., Horikoshi K. 1994; Thermococcus profundus sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Syst Appl Microbiol 17:232–236 [CrossRef]
    [Google Scholar]
  20. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  21. Miroshnichenko M. L., Bonch-Osmolovskaya E. A., Neuner A., Kostrikina N. A., Chernyh N. A., Alekseev V. A. 1989; Thermococcus stetteri sp. nov., a new extremely thermophilic marine sulfur-metabolizing archaebacterium. Syst Appl Microbiol 12:257–262 [CrossRef]
    [Google Scholar]
  22. Miroshnichenko M. L., Gongadze G. M., Rainey F. A., Kostyukova A. S., Lysenko A. M., Chernyh N. A., Bonch-Osmolovskaya E. A. 1998; Thermococcus gorgonarius sp. nov. and Thermococcus pacificus sp. nov.: heterotrophic extremely thermophilic archaea from New Zealand submarine hot vents. Int J Syst Bacteriol 48:23–29 [CrossRef]
    [Google Scholar]
  23. Miroshnichenko M. L., Hippe H., Stackebrandt E., Kostrikina N. A., Chernyh N. A., Jeanthon C., Nazina T. N., Belyaev S. S., Bonch-Osmolovskaya E. A. 2001; Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91 [CrossRef]
    [Google Scholar]
  24. Nakagawa T., Ishibashi J., Maruyama A., Yamanaka T., Morimoto Y., Kimura H., Urabe T., Fukui M. 2004; Analysis of dissimilatory sulfite reductase and 16S rRNA gene fragments from deep-sea hydrothermal sites of the Suiyo Seamount, Izu-Bonin Arc, Western Pacific. Appl Environ Microbiol 70:393–403 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Segerer A., Langworthy T. A., Stetter K. O. 1988; Thermoplasma acidophilum and Thermoplasma volcanium sp. nov. from solfatara fields. Syst Appl Microbiol 10:161–171 [CrossRef]
    [Google Scholar]
  27. Slater S., Wold S., Lu M., Boye E., Skarstad K., Kleckner N. 1995; E. coli SeqA protein binds oriC in two different methyl-modulated reactions appropriate to its roles in DNA replication initiation and origin sequestration. Cell 82:927–936 [CrossRef]
    [Google Scholar]
  28. Sleytr U. B., Messner P. 1988; Crystalline surface layers in procaryotes. J Bacteriol 170:2891–2897
    [Google Scholar]
  29. Sugai A., Masuchi Y., Uda I., Itoh T., Itoh Y. H. 2000; Core lipids of hyperthermophilic archaeon, Pyrococcus horikoshii OT3. J Jpn Oil Chem Soc 49:695–700 [CrossRef]
    [Google Scholar]
  30. Sugai A., Uda I., Itoh Y. H., Itoh T. 2004; The core lipid composition of the 17 strains of hyperthermophilic Archaea, Thermococcales . J Oleo Sci 53:41–44 [CrossRef]
    [Google Scholar]
  31. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Urabe T., Maruyama A., Marumo K., Seama N., Ishibashi J. 2001; The Archaean Park Project update. Int Ridge-Crest Res 10:23–25
    [Google Scholar]
  34. Wächtershäuser G. 2003; From pre-cells to Eukarya - a tale of two lipids. Mol Microbiol 47:13–22
    [Google Scholar]
  35. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconstitution of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  36. Wilson K. 2002; Preparation of genomic DNA from bacteria. In Short Protocols in Molecular Biology , 5th edn. vol. 1, Unit 2.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  37. Yasuda M., Oyaizu H., Yamagishi A., Oshima T. 1995; Morphological variation of new Thermoplasma acidophilum isolates from Japanese hot springs. Appl Environ Microbiol 61:3482–3485
    [Google Scholar]
  38. Zillig W. 1992; The order Thermococcales . In The Prokaryotes , 2nd edn. vol I pp  702–706 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  39. Zillig W., Holz I., Janekovic D., Schäfer W., Reiter W. D. 1983; The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst Appl Microbiol 4:88–94 [CrossRef]
    [Google Scholar]
  40. Zillig W., Reiter W.-D., Palm P., Gropp F., Neumann H., Rettenberger M. 1988; Viruses of Archaebacteria. In The Bacteriophages vol 1 pp  517–558 Edited by Calender R. New York: Plenum;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63432-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63432-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed