1887

Abstract

A mesophilic, anaerobic, fermentative bacterium, strain BN3, was isolated from a producing well of a biodegraded oil reservoir in Canada. Cells were Gram-negative, non-motile rods that did not form spores. The temperature range for growth was 15–40 °C, with optimum growth at 37–40 °C. The strain grew with up 4 % NaCl, with optimum growth in the absence of NaCl. Tryptone was required for growth. Yeast extract and elemental sulfur stimulated growth. Growth was also enhanced during fermentation of glucose, arabinose, galactose, maltose, mannose, rhamnose, lactose, ribose, fructose, sucrose, cellobiose, lactate, mannitol and glycerol. Acetate, hydrogen and CO were produced during glucose fermentation. Elemental sulfur and nitrate were used as electron acceptors and were reduced to sulfide and ammonium, respectively. The G+C content of the genomic DNA was 40·8 mol%. Phylogenetic analyses of the 16S rRNA gene sequence indicated that the strain was a member of the phylum ‘’, distantly related to the genera and (similarity values of less than 90 %). The chemotaxonomic data (fatty acids, polar lipids and quinones composition) also indicated that strain BN3 could be clearly distinguished from its closest cultivated relatives. This novel organism possesses phenotypic, chemotaxonomic and phylogenetic traits that do not allow its classification as a member of any previously described genus; therefore, it is proposed that this isolate should be described as a member of a novel species of a new genus, gen. nov., of which sp. nov. is the type species. The type strain is BN3 (=DSM 16547=JCM 12565).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63426-0
2005-05-01
2024-09-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551113.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63426-0&mimeType=html&fmt=ahah

References

  1. Batrakov S. G., Nikitin D. I., Sheichenko V. I., Ruzhitsky A. O. 1998; A novel sulfonic-acid analogue of ceramide is the major extractable lipid of the gram-negative marine bacterium Cyclobacterium marinus WH. Biochim Biophys Acta 139179–91 [CrossRef]
    [Google Scholar]
  2. Batrakov S. G., Sheichenko V. I., Nikitin D. I. 1999; A novel glycosphingolipid from gram-negative aquatic bacteria. Biochim Biophys Acta 1440163–175 [CrossRef]
    [Google Scholar]
  3. Batrakov S. G., Mosezhnyi A. E., Ruzhitsky A. O., Sheichenko V. I., Nikitin D. I. 2000; The polar-lipid composition of the sphingolipid-producing bacterium Flectobacillus major . Biochim Biophys Acta 1484225–240 [CrossRef]
    [Google Scholar]
  4. Blotevogel K. H., Gahl-Janßen L., Janssen S., Fischer U., Pilz F., Auling G., Macario A. J. L., Tindall B. J. 1992; Isolation and characterization of a novel mesophilic, fresh-water methanogen from river sediment, Methanoculleus oldenburgensis sp. nov. Arch Microbiol 157:54–59
    [Google Scholar]
  5. Bonch-Osmolovskaya E. A., Miroshnichenko M. L., Lebedinsky A. V. 12 other authors 2003; Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl Environ Microbiol 69:6143–6151 [CrossRef]
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [CrossRef]
    [Google Scholar]
  8. Daneshvar M. I., Hollis D. G., Moss C. W. 1991; Chemical characterization of clinical isolates which are similar to CDC group DF-3 bacteria. J Clin Microbiol 29:2351–2353
    [Google Scholar]
  9. Elshahed M. S., Senko J. M., Najar F. Z., Kenton S. M., Roe B. A., Dewers T. A., Spear J. R., Krumholz L. R. 2003; Bacterial diversity and sulfur cycling in a mesophilic sulfide-rich spring. Appl Environ Microbiol 69:5609–5621 [CrossRef]
    [Google Scholar]
  10. Fardeau M.-L., Magot M., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 2000; Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from oilfield water. Int J Syst Evol Microbiol 50:2141–2149 [CrossRef]
    [Google Scholar]
  11. Fardeau M.-L., Bonilla Salinas M., L'Haridon S., Jeanthon C., Verhé F., Cayol J.-L., Patel B. K. C., Garcia J.-L., Ollivier B. 2004; Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus : reassignment of T. subterraneus , Thermoanaerobacter yonseiensis , Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54:467–474 [CrossRef]
    [Google Scholar]
  12. Fautz E., Rosenfelder G., Grotjahn L. 1979; Iso-branched 2- and 3-hydroxy fatty acids as characteristic lipid constituents of some gliding bacteria. J Bacteriol 140:852–858
    [Google Scholar]
  13. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  14. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp  119–166 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  15. Godchaux W. III, Leadbetter E. R. 1980; Capnocytophaga spp. contain sulfonolipids that are novel in procaryotes. J Bacteriol 144:592–602
    [Google Scholar]
  16. Godchaux W. III, Leadbetter E. R. 1983; Unusual sulphonolipids are characteristic of the Cytophaga–Flexibacter group. J Bacteriol 153:1238–1246
    [Google Scholar]
  17. Godchaux W. III, Leadbetter E. R. 1984; Sulphonolipids of gliding bacteria. Structure of the N -acylaminosulfonates. J Biol Chem 259:2982–2990
    [Google Scholar]
  18. Hezayen F. F., Tindall B. J., Steinbüchel A., Rehm B. H. A. 2002; Characterization of a novel halophilic archaeon, Halobiforma haloterrestris gen. nov., sp. nov., and transfer of Natronobacterium nitratireducens to Halobiforma nitratireducens comb. nov. Int J Syst Evol Microbiol 52:2271–2280 [CrossRef]
    [Google Scholar]
  19. Hofstad T., Olsen I., Eribe E. R., Falsen E., Collins M. D., Lawson P. A. 2000; Dysgonomonas gen. nov. to accommodate Dysgonomonas gadei sp. nov., an organism isolated from a human gall bladder, and Dysgonomonas capnocytophagoides (formerly CDC group DF-3. Int J Syst Evol Microbiol 50:2189–2195 [CrossRef]
    [Google Scholar]
  20. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  21. Jeanthon C., L'Haridon S., Pradel N., Prieur D. 1999; Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int J Syst Bacteriol 49:591–594 [CrossRef]
    [Google Scholar]
  22. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–32 Edited by Munro H. N. New-York: Academic Press;
    [Google Scholar]
  23. Kawazoe R., Okuyama H., Reichardt W., Sasaki S. 1991; Phospholipids and a novel glycine-containing lipoamino acid in Cytophaga johnsonae Stanier strain C21. J Bacteriol 173:5470–5475
    [Google Scholar]
  24. Koga Y., Nishihara M., Morii H., Akagawa-Matsushita M. 1993; Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses. Microbiol Rev 57:164–182
    [Google Scholar]
  25. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E. 2000; Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959 [CrossRef]
    [Google Scholar]
  26. Le Bach J. P., White D. C. 1969; Identification of ceramide phosphorylethanolamine and ceramide phosphoryl glycerol in the lipids of an anaerobic bacterium. Lipid Res 10:528–534
    [Google Scholar]
  27. L'Haridon S., Cilia V., Messner P., Raguénès G., Gambacorta A., Sleytr U. B., Prieur D., Jeanthon C. 1998; Desulfurobacterium thermolithotrophum gen. nov. sp. nov. a novel autotrophic, sulphur-reducing bacterium isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 48:701–711 [CrossRef]
    [Google Scholar]
  28. L'Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. 2001; Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334
    [Google Scholar]
  29. L'Haridon S., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. 2002; Petrotoga olearia sp. nov. and Petrotoga sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 52:1715–1722 [CrossRef]
    [Google Scholar]
  30. Liesack W., Söller R., Stewart T., Hass H., Giovannoni S., Stackebrandt E. 1992; The influence of tachyletic (rapidly) evolving sequences on the topology of phylogenetic trees – intrafamily relationships and the phylogenetic position of Planctomycetaceae as revealed by comparative analysis of 16S ribosomal RNA sequences. Syst Appl Microbiol 15:357–362 [CrossRef]
    [Google Scholar]
  31. Magot M., Fardeau M.-L., Arnauld O., Lanau C., Ollivier B., Thomas P., Patel B. K. C. 1997a; Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155:185–191 [CrossRef]
    [Google Scholar]
  32. Magot M., Ravot G., Campaignolle X., Ollivier B., Patel B. K. C., Fardeau M.-L., Thomas P., Crolet J.-L., Garcia J.-L. 1997b; Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfate-reducing bacterium from corroding offshore oil wells. Int J Syst Bacteriol 47:818–824 [CrossRef]
    [Google Scholar]
  33. Magot M., Ollivier B., Patel B. K. C. 2000; Microbiology of petroleum reservoirs. Antonie van Leeuwenhoek 77:103–116 [CrossRef]
    [Google Scholar]
  34. Mayberry W. R. 1980; Cellular distribution and linkage of d-(−)-3-hydroxy fatty acids in Bacteroides species. J Bacteriol 144:200–204
    [Google Scholar]
  35. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurements of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  36. Minnikin D. E., Goodfellow M. 1981; Lipids in the classification of Bacillus and related taxa. In The Aerobic Endospore-forming Bacteria Classification and Identification pp  59–90 Special Publication of the Society for General Microbiology no. 4 Edited by Berkeley R. C. W., Goodfellow M. London: Academic Press;
    [Google Scholar]
  37. Miranda-Tello E., Fardeau M.-L., Sepúlveda J., Fernández L., Cayol J.-L., Thomas P., Ollivier B. 2003; Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrate- and thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int J Syst Evol Microbiol 53:1509–1514 [CrossRef]
    [Google Scholar]
  38. Miranda-Tello E., Fardeau M.-L., Thomas P., Ramirez F., Casalot F., Cayol J.-L., Garcia J.-L., Ollivier B. 2004; Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. Int J Syst Evol Microbiol 54:169–174 [CrossRef]
    [Google Scholar]
  39. Miroshnichenko M. L., Hippe H., Stackebrandt E., Kostrikina N. A., Chernyh N. A., Jeanthon C., Nazina T. N., Belyaev S. S., Bonch-Osmolovskaya E. A. 2001; Isolation and characterization of Thermococcus sibiricus sp. nov. from a Western Siberia high-temperature oil reservoir. Extremophiles 5:85–91 [CrossRef]
    [Google Scholar]
  40. Miyagawa E., Suto T. 1980; Cellular fatty acid composition in Bacteroides oralis and Bacteroides ruminicola . J Gen Appl Microbiol 26:331–343 [CrossRef]
    [Google Scholar]
  41. Miyagawa E., Azuma R., Suto T. 1979; Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J Gen Appl Microbiol 25:41–51 [CrossRef]
    [Google Scholar]
  42. Moore L. V. H., Bourne D. M., Moore W. E. C. 1994; Comparative distribution and taxonomic value of cellular fatty acids in thirty-three genera of anaerobic gram-negative bacilli. Int J Syst Bacteriol 44:338–347 [CrossRef]
    [Google Scholar]
  43. Murray R. G. E., Doetsch R. N., Robinow C. F. 1994; Determinative and cytological light microscopy. In Methods for General and Molecular Bacteriology pp  21–41 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Naka T., Fujiwara N., Yano I. 9 other authors 2003; Structural analysis of sphingophospholipids derived from Sphingobacterium spiritivorum , the type species of the genus Sphingobacterium . Biochim Biophys Acta 163583–92 [CrossRef]
    [Google Scholar]
  45. Nakagawa Y., Yamasato K. 1993; Phylogenetic diversity of the genus Cytophaga revealed by 16S rRNA sequencing and menaquinone analysis. J Gen Microbiol 139:1155–1161 [CrossRef]
    [Google Scholar]
  46. Olsen G. J., Matsuda H., Hagström R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  47. Orphan V. J., Taylor L. T., Hafenbradl D., DeLong E. F. 2000; Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711 [CrossRef]
    [Google Scholar]
  48. Oyaizu H., Komagata K. 1981; Chemotaxonomic and phenotypic characterization of the strains of species in the Flavobacterium–Cytophaga complex. J Gen Appl Microbiol 27:57–107 [CrossRef]
    [Google Scholar]
  49. Paster B. J., Dewhirst F. E., Olsen I., Fraser G. J. 1994; Phylogeny of Bacteroides , Prevotella , and Porphyromonas spp. and related bacteria. J Bacteriol 176:725–732
    [Google Scholar]
  50. Pitta T. P., Leadbetter E. R., Godchaux W. III 1989; Increase of ornithine amino lipid content in a sulfonolipid-deficient mutant of Cytophaga johnsonae . J Bacteriol 171:952–957
    [Google Scholar]
  51. Ravot G., Magot M., Ollivier B., Patel B. K. C., Ageron E., Grimont P. A. D., Thomas P., Garcia J.-L. 1997; Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol Lett 147:81–88 [CrossRef]
    [Google Scholar]
  52. Ravot G., Magot M., Fardeau M.-L., Patel B. K. C., Thomas P., Garcia J.-L., Ollivier B. 1999; Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int J Syst Bacteriol 49:1141–1147 [CrossRef]
    [Google Scholar]
  53. Riediger C. L., MacDonald R., Fowler M. G., Snowdon L. R., Sherwin M. D. 1999; Origin and alteration of Lower Cretaceous Mannville Group oils from the Provost oil field east central Alberta, Canada. Bull Can Petrol Geol 47:43–62
    [Google Scholar]
  54. Rizza V., Tucker A. N., White D. C. 1970; Lipids of Bacteroides melaninogenicus . J Bacteriol 101:84–91
    [Google Scholar]
  55. Rouviere P., Mandelco L., Winker S., Woese C. R. 1992; A detailed phylogeny for the Methanomicrobiales . Syst Appl Microbiol 15:363–371 [CrossRef]
    [Google Scholar]
  56. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  57. Sakamoto M., Suzuki M., Umeda M., Ishikawa I., Benno Y. 2002; Reclassification of Bacteroides forsythus (Tanner et al . 1986) as Tannerella forsythensis corrig., gen. nov., comb. nov.. Int J Syst Evol Microbiol 52:841–849 [CrossRef]
    [Google Scholar]
  58. Schlesner H., Rensmann C., Tindall B. J., Gade D., Rabus R., Pfeiffer S., Hirsch P. 2004; Taxonomic heterogeneity within the Planctomycetales as derived by DNA–DNA hybridization, description of Rhodopirellula baltica gen. nov., sp. nov., transfer of Pirellula marina to the genus Blastopirellula gen.nov. as Blastopirellula marina comb. nov. and emended description of the genus Pirellula . Int J Syst Evol Microbiol 54:1567–1580 [CrossRef]
    [Google Scholar]
  59. Shah H. N., Collins M. D. 1980; Fatty acid and isoprenoid quinone composition in the classification of Bacteroides melaninogenicus and related taxa. J Appl Bacteriol 48:75–87 [CrossRef]
    [Google Scholar]
  60. Shah H. N., Collins M. D. 1983; Genus Bacteroides . A chemotaxonomical perspective. J Appl Bacteriol 55:403–416 [CrossRef]
    [Google Scholar]
  61. Shah H. N., Collins M. D. 1988; Proposal for reclassification of Bacteroides asaccharolyticus , Bacteroides gingivalis , and Bacteroides endodontalis in a new genus, Porphyromonas . Int J Syst Bacteriol 38:128–131 [CrossRef]
    [Google Scholar]
  62. Shah H. N., Collins M. D. 1989; Proposal to restrict the genus Bacteroides (Castellani and Chalmers) to Bacteroides fragilis and closely related species. Int J Syst Bacteriol 39:85–87 [CrossRef]
    [Google Scholar]
  63. Shah H. N., Collins M. D. 1990; Prevotella , a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides . Int J Syst Bacteriol 40:205–208 [CrossRef]
    [Google Scholar]
  64. Sittig M., Schlesner H. 1993; Chemotaxonomic investigation of various prosthecate and/or budding bacteria. Syst Appl Microbiol 16:92–103 [CrossRef]
    [Google Scholar]
  65. Stackebrandt E. 1988; Phylogenetic relationships vs. phenotypic diversity: how to achieve a phylogenetic classification system of the eubacteria. Can J Microbiol 34:552–556 [CrossRef]
    [Google Scholar]
  66. Steyn P. L., Segers P., Vancanneyt M., Sandra P., Kersters K., Joubert J. J. 1998; Classification of heparinolytic bacteria into a new genus, Pedobacter , comprising four species: Pedobacter heparinus comb.nov., Pedobacter piscium comb. nov., Pedobacter africanus , sp.nov. and Pedobacter saltans sp. nov.Proposal of the family Sphingobacteriaceae fam. nov. Int J Syst Bacteriol 48:165–177 [CrossRef]
    [Google Scholar]
  67. Stöhr R., Waberski A., Völker H., Tindall B. J., Thomm M. 2001; Hydrogenothermus marinus gen. nov., sp. nov., a novel thermophilic hydrogen-oxidizing bacterium, recognition of Calderobacterium hydrogenophilum as a member of the genus Hydrogenobacter and proposal of the reclassification of Hydrogenobacter acidophilus as Hydrogenobaculum acidophilum gen. nov., comb. nov., in the phylum ‘ Hydrogenobacter / Aquifex ’. Int J Syst Evol Microbiol 51:1853–1862 [CrossRef]
    [Google Scholar]
  68. Takahata Y., Nishijima M., Hoaki T., Maruyama T. 2000; Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79 [CrossRef]
    [Google Scholar]
  69. Takahata Y., Nishijima M., Hoaki T., Maruyama T. 2001; Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int J Syst Evol Microbiol 51:1901–1909 [CrossRef]
    [Google Scholar]
  70. Tamaoka J., Komagata K. 1994; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128
    [Google Scholar]
  71. Teske A., Hinrichs K.-U., Edgcomb V., de Vera Gomez A., Kysela D., Sylva S. P., Sogin M. L., Jannasch H. W. 2002; Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl Environ Microbiol 68:1994–2007 [CrossRef]
    [Google Scholar]
  72. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  73. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  74. Urakami T., Komagata K. 1986; Methanol-utilizing Ancylobacter strains and comparison of their fatty acid compositions and quinone systems with those of Spirosoma , Flectobacillus , and Runella species. Int J Syst Bacteriol 36:415–421 [CrossRef]
    [Google Scholar]
  75. von Wintzingerode F., Selent B., Hegemann W., Göbel U. B. 1999; Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286
    [Google Scholar]
  76. Wainø M., Tindall B. J., Schumann P., Ingvorsen K. 1999; Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49:821–831 [CrossRef]
    [Google Scholar]
  77. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  78. Zellner G., Boone D. R., Keswani J., Whitman W. B., Woese C. R., Hagelstein A., Tindall B. J., Stackebrandt E. 1999; Reclassification of Methanogenium tationis and Methanogenium liminatans as Methanofollis tationis gen.nov., comb. nov., and Methanofollis liminatans comb. nov., and description of a new strain of Methanofollis liminatans . Int J Syst Bacteriol 49:247–255 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63426-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63426-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error