sp. nov., a thermophilic bacterium isolated from deep-sea sediments of the Ayu Trough Free

Abstract

Two thermophilic, spore-forming strains, TM1 and TM5, were isolated from deep-sea sediment (4000 m below sea level) of the Ayu Trough in the western Pacific Ocean. Cells of the two strains were Gram-positive, motile and rod-shaped. Their spores were ellipsoidal, subterminal to terminal and occurred in swollen sporangia. The two strains grew at temperatures up to 65 °C and in the pH range 6·5–9·0. The NaCl concentration for optimal growth was 3·0 % (w/v) and growth was inhibited by 5 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strains TM1 and TM5 belonged to the genus , and that strain TM1 was most closely related to DSM 15084 (96·7 %), DSM 4216 (96·1 %), NCIMB 13113 (95·8 %) and DSM 3670 (95·7 %). Between the 16S rRNA gene sequences of strains TM1 and TM5 there were only three nucleotide differences, implying that the two strains were of the same species. The cellular fatty acid profiles of the two strains were also very similar, with iso-C, iso-C, C, iso-C and anteiso-C as the major components. The G+C content of strain TM1 was 38·7 %. On the basis of phenotypic and molecular data, strains TM1 and TM5 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TM1 (=KCTC 10634=JCM 12523).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63424-0
2005-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551211.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63424-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Andersson M., Laukkanen M., Nurmiaho-Lassila E.-L., Rainey F. A., Niemelä S. I., Salkinoja-Salonen M. 1995; Bacillus thermosphaericus sp. nov., a new thermophilic ureolytic Bacillus isolated from air. Syst Appl Microbiol 18:203–220 [CrossRef]
    [Google Scholar]
  3. Arfman N., Dijkhuizen L., Kirchhof G. 8 other authors 1992; Bacillus methanolicus sp. nov., a new species of thermotolerant, methanol-utilizing, endospore-forming bacteria. Int J Syst Bacteriol 42:439–445 [CrossRef]
    [Google Scholar]
  4. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  5. Bartholomew J. W., Paik G. 1966; Isolation and identification of obligate thermophilic sporeforming bacilli from ocean basin cores. J Bacteriol 92:635–638
    [Google Scholar]
  6. Chun J. 1995; Computer-assisted classification and identification of actinomycetes . PhD thesis University of Newcastle; Newcastle upon Tyne, UK:
  7. Dufresne S., Bousquest J., Boissinot M., Guay R. 1996; Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, Gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064 [CrossRef]
    [Google Scholar]
  8. Egorova A. A. 1938; Thermophilic bacteria in arctic areas. C R (Doki) Acad Sci U S S R 19649–650
    [Google Scholar]
  9. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  11. Fitch W. M. 1972; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416
    [Google Scholar]
  12. Fitch W. M., Margoliash E. 1967; Construction of phylogenetic trees. Science 155:279–284 [CrossRef]
    [Google Scholar]
  13. Folch J., Lees M., Sloane Stanley G. H. 1957; A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509
    [Google Scholar]
  14. Gugliandolo C., Maugeri T. L., Caccamo D., Stackebrandt E. 2003; Bacillus aeolius sp. nov. a novel thermophilic, halophilic marine Bacillus species from Eolian Islands (Italy). Syst Appl Microbiol 26:172–176 [CrossRef]
    [Google Scholar]
  15. Heyndrickx M., Lebbe L., Vancanneyt M. 7 other authors 1997; A polyphasic reassessment of the genus Aneurinibacillus , reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al . 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig., and A. migulans , and A. thermoaerophilus . Int J Syst Bacteriol 47:808–817 [CrossRef]
    [Google Scholar]
  16. Hjörleifsdóttir S., Kristjánsson J. K., Alfredsson G. A. 1989; Thermophilic organisms in submarine freshwater hot springs in Iceland. In Microbiology of Extreme Environments and its Potential for Biotechnology . pp  109–112 Edited by Costa M. S. Da, Duarte J. C., Williams R. A. D. London: Elsevier;
  17. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  18. Mandel M., Igambi L., Bergendahl J., Dodson M. L. Jr, Scheltgen E. 1970; Correlation of melting temperature and caesium chloride buoyant density of bacterial deoxyribonucleic acid. J Bacteriol 101:333–338
    [Google Scholar]
  19. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  20. Marteinsson V. Th., Birrien J.-L., Kistjánsson J. K., Prieur D. 1995; First isolation of thermophilic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174 [CrossRef]
    [Google Scholar]
  21. Marteinsson V. Th., Birrien J. L., Jeanthon C., Prieur D. 1996; Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21:255–266 [CrossRef]
    [Google Scholar]
  22. Nakamura L. K., Blumenstock I., Claus D. 1988; Taxonomic study of Bacillus coagulans Hammer 1915 with a proposal for Bacillus smithii sp. nov. Int J Syst Bacteriol 38:63–73 [CrossRef]
    [Google Scholar]
  23. Nazina T. N., Tourova T. P., Poltaraus A. B. 8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans , Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus , G. thermocatenulatus , G. thermoleovorans , G. kaustophilus , G.thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51:433–446
    [Google Scholar]
  24. Rainey F. A., Fritze D., Stackebrandt E. 1994; The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiol Lett 115:205–211 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Scholz T., Demharter W., Hensel R., Kandler O. 1987; Bacillus pallidus sp. nov., a new thermophilic species from sewage. Syst Appl Microbiol 9:91–96 [CrossRef]
    [Google Scholar]
  27. Sharp R. J., Riley P. W., White D. 1992; Heterotrophic thermophilic bacilli. In Thermophilic Bacteria pp  19–50 Edited by Kristjansson J. K. Boca Raton: CRC Press;
    [Google Scholar]
  28. Sneath P. H. A. 1986; Endospore-forming Gram-positive rods and cocci. In Bergey's Manual of Systematic Bacteriology vol 2 pp  1104–1207 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: William & Wilkins;
    [Google Scholar]
  29. Sohn J. H., Kwon K. Y., Kang J.-H., Jung H. B., Kim S.-J. 2004; Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment. Int J Syst Evol Microbiol 54:1483–1487 [CrossRef]
    [Google Scholar]
  30. Swofford D. L. 1998 paup* – Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Touzel J. P., O'Donohue M., Debeire P., Samain E., Breton C. 2000; Thermobacillus xylanilyticus gen. nov., sp. nov., a new aerobic thermophilic xylan-degrading bacterium isolated from farm soil. Int J Syst Evol Microbiol 50:315–320 [CrossRef]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  34. Wisotzkey J. D., Jurshuk P. Jr, Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63424-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63424-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed