1887

Abstract

A new bacterial isolate from a methylamine enrichment culture is described, representing a novel species of facultatively methylotrophic bacteria. The non-motile bacterium is Gram-negative, replicates by budding and does not form endospores. The isolate utilizes methylated amines, as well as a variety of monosaccharides, disaccharides, amino acids, organic acids, aromatic compounds and alcohols as substrates, but does not utilize methanol. Growth factors are not required, although yeast extract stimulates growth. The major components of the fatty acid profile are C 7, C cyclo and C. The dominant cellular phospholipids are phosphatidyl acid, phosphatidylcholine and phosphatidylethanolamine. The G+C content of the DNA is 65·7±0·3 mol%. 16S rRNA gene-based phylogenetic analysis revealed that the novel isolate belongs to the - and is closely related to the only representative of the genus , (97·4 % sequence similarity). However, the level of DNA–DNA relatedness with is less than 3 %, justifying the placement of this isolate into a novel species of the genus . The name sp. nov. is proposed (type strain JLW10=ATCC BAA-1080=DSM 16812).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63409-0
2005-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551247.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63409-0&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  2. Anthony C., Zatman L. J. 1965; The microbial oxidation of methanol. The alcohol dehydrogenase of Pseudomonas sp. M27 Biochem J 96:808–812
    [Google Scholar]
  3. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  4. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  5. Daniels L., Hanson R. S., Philips J. A. 1994; Chemical analysis. In Methods for General and Molecular Bacteriology pp  512–554 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  6. Dawson R. M. C., Elliott D. C., Elliott W. H., Jones K. M. 2002 Data for Biochemical Research New York: Oxford University Press;
    [Google Scholar]
  7. De Marco P., Pacheco C. C., Figueiredo A. R., Moradas-Ferreira P. 2004; Novel pollutant-resistant methylotrophic bacteria for use in bioremediation. FEMS Microbiol Lett 234:75–80 [CrossRef]
    [Google Scholar]
  8. Dittmer J. C., Wells M. A. 1969; Quantitative and qualitative analysis of lipids and lipid components. Methods Enzymol 14:482–530
    [Google Scholar]
  9. Doronina N. V., Braus-Strohmeyer S. A., Leisinger T., Trotsenko Y. A. 1995; Isolation and characterization of a new facultatively methylotrophic bacterium: description of Methylorhabdus multivorans gen. nov., sp. nov. Syst Appl Microbiol 18:92–98 [CrossRef]
    [Google Scholar]
  10. Doronina N. V., Trotsenko Y. A., Krausova V. I., Boulygina E. S., Tourova T. P. 1998; Methylopila capsulata gen. nov., sp. nov., a novel non-pigmented aerobic facultatively methylotrophic bacterium. Int J Syst Bacteriol 48:1313–1321 [CrossRef]
    [Google Scholar]
  11. Doronina N. V., Trotsenko Y. A., Tourova T. P. 2000; Methylarcula marina gen. nov., sp. nov. and Methylarcula terricola sp. nov.: novel aerobic, moderately halophilic, facultatively methylotrophic bacteria from coastal saline environments. Int J Syst Evol Microbiol 50:1849–1859
    [Google Scholar]
  12. Eady R. R., Large P. J. 1968; Purification and properties of an amine dehydrogenase from Pseudomonas AM1 and its role in growth on methylamine. Biochem J 106:245–255
    [Google Scholar]
  13. Felsenstein J. 2003 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  14. Fritz I., Strömpl C., Abraham W. R. 2004; Phylogenetic relationships of the genera Stella , Labrys and Angulomicrobium within the ‘ Alphaproteobacteria ’ and description of Angulomicrobium amanitiforme sp. nov. Int J Syst Evol Microbiol 54:651–657 [CrossRef]
    [Google Scholar]
  15. Gonzalez J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Sagittula stellata gen. nov., sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780 [CrossRef]
    [Google Scholar]
  16. Goodwin P. 1990; Assay of assimilatory enzymes in crude extracts of serine pathway methylotrophs. Methods Enzymol 188:361–365
    [Google Scholar]
  17. Harder W., Attwood M., Quayele J. R. 1973; Methanol assimilation by Hyphomicrobium spp. J Gen Microbiol 78:155–163 [CrossRef]
    [Google Scholar]
  18. Holmes A. J., Kelly D. P., Baker S. C., Thompson A. S., De Marco P., Kenna E. M., Murrell J. C. 1997; Methylosulfonomonas methylovora gen. nov., sp. nov., and Marinosulfonomonas methylotropha gen. nov., sp. nov.: novel methylotrophs able to grow on methanesulfonic acid. Arch Microbiol 167:46–53 [CrossRef]
    [Google Scholar]
  19. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–681 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  20. Kämpfer P., Neef A., Salkinoja-Salonen M. S., Busse H.-J. 2002; Chelatobacter heintzii (Auling et al . 1993) is a later subjective synonym of Aminobacter aminovorans (Urakami et al . 1992). Int J Syst Evol Microbiol 52:835–839 [CrossRef]
    [Google Scholar]
  21. Kimura T., Sugahara I., Hanai K., Asahi T. 1995; Purification and characterization of the new γ -glutamylmethylamide dissimilating enzyme system from Methylophaga sp. AA-30. Biosci Biotechnol Biochem 59:648–655 [CrossRef]
    [Google Scholar]
  22. Kuivila K. M., Murray J. W., Devol A. H., Lidstrom M. E., Reimers C. E. 1988; Methane cycling in the sediments of Lake Washington. Limnol Oceanogr 33:571–581 [CrossRef]
    [Google Scholar]
  23. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  24. McDonald I. R., Murrell J. C. 1997; The methanol dehydrogenase structural gene mxaF and its use as a functional gene probe for methanotrophs and methylotrophs. Appl Environ Microbiol 63:3218–3224
    [Google Scholar]
  25. Murray R. G. E. 1992; The family Deinococcaceae . In The Prokaryotes , 2nd edn. pp  3732–3744 Edited by Balows A., Trüper H. G., Dworkin H., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  26. Pol A., Op den Camp H. J., Mees S. G., Kersten M. A., van der Drift C. 1994; Isolation of a dimethylsulfide-utilizing Hyphomicrobium species and its application in biofiltration of polluted air. Biodegradation 5:105–112 [CrossRef]
    [Google Scholar]
  27. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  28. Shishkina V. N., Iurchenko V. V., Romanovskaia V. A., Malashenko Iu. R., Trotsenko Iu. A. 1976; Alternativity of methane assimilation pathways in obligate methylotrophs. Mikrobiologiia 45:417–419 (in Russian
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp  611–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Tabita F. R. 1980; Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143:1275–1280
    [Google Scholar]
  31. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  33. Vasil'eva L. V., Semenov A. M. 1984; New budding prosthecate bacterium Labrys monahos with radial cell symmetry. Microbiology (English translation of Mikrobiologiia ) 5368–75
    [Google Scholar]
  34. Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1998; The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356
    [Google Scholar]
  35. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
  36. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650 [CrossRef]
    [Google Scholar]
  37. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  38. Zehr J. P., McReynolds L. A. 1989; Use of degenerate oligonucleotides for amplification of the nifH gene from the marine cyanobacterium Trichodesmium thiebautii . Appl Environ Microbiol 55:2522–2526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63409-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63409-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error