sp. nov., a methanotroph from Lake Washington, Seattle, USA, and emended description of the genus Free

Abstract

An obligately methanotrophic bacterial strain, LW14, isolated from the sediment of Lake Washington, Seattle, USA, is described taxonomically. The isolate is an aerobic, Gram-negative, non-motile bacterium capable of growth on methane, and possesses type I intracytoplasmic membranes (i.e. it is a type I methanotroph). The strain possesses particulate methane monooxygenase (MMO) and has no soluble MMO. Formaldehyde is assimilated via the ribulose monophosphate cycle. The isolate grows within a pH range of 4–8, with the optimum between pH 5·5 and 6·5. The cellular fatty acid profile is dominated by C 18, C 7 and C 5 fatty acids. The DNA G+C content is 53·3±0·4 mol%. On the basis of sequence analysis of the 16S rRNA gene, isolate LW14 is related most closely to representatives of the genus . However, DNA–DNA hybridization analysis reveals only a distant relationship between isolate LW14 and the previously described species. On the basis of its phenotypic and genotypic characteristics, LW14 represents a novel species of the genus , for which the name sp. nov. is proposed, with LW14 (=ATCC BAA-1047=JCM 13284) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63405-0
2005-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2345.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63405-0&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  2. Auman A. J., Lidstrom M. E. 2002; Analysis of sMMO-containing Type I methanotrophs in Lake Washington sediment. Environ Microbiol 4:517–524 [CrossRef]
    [Google Scholar]
  3. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  4. Auman A. J., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  5. Bodrossy L., Murrell J. C., Dalton H., Kalman M., Puskas L. G., Kovacs K. L. 1995; Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61:3549–3555
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  7. Bowman J. P., Sly L. I., Stackebrandt E. 1995; The phylogenetic position of the family Methylococcaceae . Int J Syst Bacteriol 45:182–185 [CrossRef]
    [Google Scholar]
  8. Chistoserdova L., Laukel M., Portais J.-C., Vorholt J. A., Lidstrom M. E. 2004; Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28 [CrossRef]
    [Google Scholar]
  9. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  10. Costello A. M., Auman A. J., Macalady J. L., Scow K. M., Lidstrom M. E. 2002; Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 2003 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  12. Goodwin P. M. 1990; Assay of assimilatory enzymes in crude extracts of serine pathway methylotrophs. Methods Enzymol 188:361–365
    [Google Scholar]
  13. Hagemeier C. H., Chistoserdova L., Lidstrom M. E., Thauer R. K., Vorholt J. A. 2000; Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769 [CrossRef]
    [Google Scholar]
  14. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  15. Higgins I. J., Best D. J., Hammond R. C. 1980; New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286:561–564 [CrossRef]
    [Google Scholar]
  16. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  17. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  18. Kalyuzhnaya M. G., Lidstrom M. E., Chistoserdova L. 2004; Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48:463–472 [CrossRef]
    [Google Scholar]
  19. King G. M. 1992; Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microbial Ecol 12:431–468
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  21. Miller A. R., Keener W. K., Watwood M. E., Roberto F. F. 2002; A rapid fluorescence-based assay for detecting soluble methane monooxygenase. Appl Microbiol Biotechnol 58:183–188 [CrossRef]
    [Google Scholar]
  22. Oremland R. S., Miller L. G., Culberson C. W., Connell T. L., Jahnke L. 1994; Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Appl Environ Microbiol 60:3640–3646
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Shishkina V. N., Iurchenko V. V., Romanovskaia V. A., Malashenko Iu. R., Trotsenko Iu. A. 1976; Alternativity of methane assimilation pathways in obligate methylotrophs. Mikrobiologiia 45:417–419 (in Russian
    [Google Scholar]
  25. Tabita F. R. 1980; Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143:1275–1280
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1998; The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356
    [Google Scholar]
  28. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
  29. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650 [CrossRef]
    [Google Scholar]
  30. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  31. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  32. Wise M. G., McArthur J. V., Shimkets L. J. 2001; Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed