1887

Abstract

An obligately methanotrophic bacterial strain, LW14, isolated from the sediment of Lake Washington, Seattle, USA, is described taxonomically. The isolate is an aerobic, Gram-negative, non-motile bacterium capable of growth on methane, and possesses type I intracytoplasmic membranes (i.e. it is a type I methanotroph). The strain possesses particulate methane monooxygenase (MMO) and has no soluble MMO. Formaldehyde is assimilated via the ribulose monophosphate cycle. The isolate grows within a pH range of 4–8, with the optimum between pH 5·5 and 6·5. The cellular fatty acid profile is dominated by C 18, C 7 and C 5 fatty acids. The DNA G+C content is 53·3±0·4 mol%. On the basis of sequence analysis of the 16S rRNA gene, isolate LW14 is related most closely to representatives of the genus . However, DNA–DNA hybridization analysis reveals only a distant relationship between isolate LW14 and the previously described species. On the basis of its phenotypic and genotypic characteristics, LW14 represents a novel species of the genus , for which the name sp. nov. is proposed, with LW14 (=ATCC BAA-1047=JCM 13284) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63405-0
2005-11-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2345.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63405-0&mimeType=html&fmt=ahah

References

  1. Anthony C. 1982 The Biochemistry of Methylotrophs London: Academic Press;
    [Google Scholar]
  2. Auman A. J., Lidstrom M. E. 2002; Analysis of sMMO-containing Type I methanotrophs in Lake Washington sediment. Environ Microbiol 4:517–524 [CrossRef]
    [Google Scholar]
  3. Auman A. J., Stolyar S., Costello A. M., Lidstrom M. E. 2000; Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266 [CrossRef]
    [Google Scholar]
  4. Auman A. J., Speake C. C., Lidstrom M. E. 2001; nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67:4009–4016 [CrossRef]
    [Google Scholar]
  5. Bodrossy L., Murrell J. C., Dalton H., Kalman M., Puskas L. G., Kovacs K. L. 1995; Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61:3549–3555
    [Google Scholar]
  6. Bowman J. P., Sly L. I., Nichols P. D., Hayward A. C. 1993; Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus , validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43:735–753 [CrossRef]
    [Google Scholar]
  7. Bowman J. P., Sly L. I., Stackebrandt E. 1995; The phylogenetic position of the family Methylococcaceae . Int J Syst Bacteriol 45:182–185 [CrossRef]
    [Google Scholar]
  8. Chistoserdova L., Laukel M., Portais J.-C., Vorholt J. A., Lidstrom M. E. 2004; Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186:22–28 [CrossRef]
    [Google Scholar]
  9. Costello A. M., Lidstrom M. E. 1999; Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65:5066–5074
    [Google Scholar]
  10. Costello A. M., Auman A. J., Macalady J. L., Scow K. M., Lidstrom M. E. 2002; Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4:443–450 [CrossRef]
    [Google Scholar]
  11. Felsenstein J. 2003 Inferring Phylogenies Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  12. Goodwin P. M. 1990; Assay of assimilatory enzymes in crude extracts of serine pathway methylotrophs. Methods Enzymol 188:361–365
    [Google Scholar]
  13. Hagemeier C. H., Chistoserdova L., Lidstrom M. E., Thauer R. K., Vorholt J. A. 2000; Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267:3762–3769 [CrossRef]
    [Google Scholar]
  14. Hanson R. S., Hanson T. E. 1996; Methanotrophic bacteria. Microbiol Rev 60:439–471
    [Google Scholar]
  15. Higgins I. J., Best D. J., Hammond R. C. 1980; New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286:561–564 [CrossRef]
    [Google Scholar]
  16. Higgins D. G., Thompson J. D., Gibson T. J. 1996; Using clustal for multiple sequence alignments. Methods Enzymol 266:383–402
    [Google Scholar]
  17. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology . pp  655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
  18. Kalyuzhnaya M. G., Lidstrom M. E., Chistoserdova L. 2004; Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48:463–472 [CrossRef]
    [Google Scholar]
  19. King G. M. 1992; Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microbial Ecol 12:431–468
    [Google Scholar]
  20. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  21. Miller A. R., Keener W. K., Watwood M. E., Roberto F. F. 2002; A rapid fluorescence-based assay for detecting soluble methane monooxygenase. Appl Microbiol Biotechnol 58:183–188 [CrossRef]
    [Google Scholar]
  22. Oremland R. S., Miller L. G., Culberson C. W., Connell T. L., Jahnke L. 1994; Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Appl Environ Microbiol 60:3640–3646
    [Google Scholar]
  23. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Shishkina V. N., Iurchenko V. V., Romanovskaia V. A., Malashenko Iu. R., Trotsenko Iu. A. 1976; Alternativity of methane assimilation pathways in obligate methylotrophs. Mikrobiologiia 45:417–419 (in Russian
    [Google Scholar]
  25. Tabita F. R. 1980; Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143:1275–1280
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Vorholt J. A., Chistoserdova L., Lidstrom M. E., Thauer R. K. 1998; The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180:5351–5356
    [Google Scholar]
  28. Vorholt J. A., Chistoserdova L., Stolyar S. M., Thauer R. K., Lidstrom M. E. 1999; Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181:5750–5757
    [Google Scholar]
  29. Vorholt J. A., Marx C. J., Lidstrom M. E., Thauer R. K. 2000; Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182:6645–6650 [CrossRef]
    [Google Scholar]
  30. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  31. Whittenbury R., Phillips K. C., Wilkinson J. F. 1970; Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61:205–218 [CrossRef]
    [Google Scholar]
  32. Wise M. G., McArthur J. V., Shimkets L. J. 2001; Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51:611–621
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error