1887

Abstract

An obligately methanotrophic bacterial strain, LW14, isolated from the sediment of Lake Washington, Seattle, USA, is described taxonomically. The isolate is an aerobic, Gram-negative, non-motile bacterium capable of growth on methane, and possesses type I intracytoplasmic membranes (i.e. it is a type I methanotroph). The strain possesses particulate methane monooxygenase (MMO) and has no soluble MMO. Formaldehyde is assimilated via the ribulose monophosphate cycle. The isolate grows within a pH range of 4–8, with the optimum between pH 5·5 and 6·5. The cellular fatty acid profile is dominated by C 18, C 7 and C 5 fatty acids. The DNA G+C content is 53·3±0·4 mol%. On the basis of sequence analysis of the 16S rRNA gene, isolate LW14 is related most closely to representatives of the genus . However, DNA–DNA hybridization analysis reveals only a distant relationship between isolate LW14 and the previously described species. On the basis of its phenotypic and genotypic characteristics, LW14 represents a novel species of the genus , for which the name sp. nov. is proposed, with LW14 (=ATCC BAA-1047=JCM 13284) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63405-0
2005-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2345.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63405-0&mimeType=html&fmt=ahah

References

  1. Anthony, C. ( 1982; ). The Biochemistry of Methylotrophs. London: Academic Press.
  2. Auman, A. J. & Lidstrom, M. E. ( 2002; ). Analysis of sMMO-containing Type I methanotrophs in Lake Washington sediment. Environ Microbiol 4, 517–524.[CrossRef]
    [Google Scholar]
  3. Auman, A. J., Stolyar, S., Costello, A. M. & Lidstrom, M. E. ( 2000; ). Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66, 5259–5266.[CrossRef]
    [Google Scholar]
  4. Auman, A. J., Speake, C. C. & Lidstrom, M. E. ( 2001; ). nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol 67, 4009–4016.[CrossRef]
    [Google Scholar]
  5. Bodrossy, L., Murrell, J. C., Dalton, H., Kalman, M., Puskas, L. G. & Kovacs, K. L. ( 1995; ). Heat-tolerant methanotrophic bacteria from the hot water effluent of a natural gas field. Appl Environ Microbiol 61, 3549–3555.
    [Google Scholar]
  6. Bowman, J. P., Sly, L. I., Nichols, P. D. & Hayward, A. C. ( 1993; ). Revised taxonomy of the methanotrophs: description of Methylobacter gen. nov., emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group I methanotrophs. Int J Syst Bacteriol 43, 735–753.[CrossRef]
    [Google Scholar]
  7. Bowman, J. P., Sly, L. I. & Stackebrandt, E. ( 1995; ). The phylogenetic position of the family Methylococcaceae. Int J Syst Bacteriol 45, 182–185.[CrossRef]
    [Google Scholar]
  8. Chistoserdova, L., Laukel, M., Portais, J.-C., Vorholt, J. A. & Lidstrom, M. E. ( 2004; ). Multiple formate dehydrogenase enzymes in the facultative methylotroph Methylobacterium extorquens AM1 are dispensable for growth on methanol. J Bacteriol 186, 22–28.[CrossRef]
    [Google Scholar]
  9. Costello, A. M. & Lidstrom, M. E. ( 1999; ). Molecular characterization of functional and phylogenetic genes from natural populations of methanotrophs in lake sediments. Appl Environ Microbiol 65, 5066–5074.
    [Google Scholar]
  10. Costello, A. M., Auman, A. J., Macalady, J. L., Scow, K. M. & Lidstrom, M. E. ( 2002; ). Estimation of methanotroph abundance in a freshwater lake sediment. Environ Microbiol 4, 443–450.[CrossRef]
    [Google Scholar]
  11. Felsenstein, J. ( 2003; ). Inferring Phylogenies. Sunderland, MA: Sinauer Associates.
  12. Goodwin, P. M. ( 1990; ). Assay of assimilatory enzymes in crude extracts of serine pathway methylotrophs. Methods Enzymol 188, 361–365.
    [Google Scholar]
  13. Hagemeier, C. H., Chistoserdova, L., Lidstrom, M. E., Thauer, R. K. & Vorholt, J. A. ( 2000; ). Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1. Eur J Biochem 267, 3762–3769.[CrossRef]
    [Google Scholar]
  14. Hanson, R. S. & Hanson, T. E. ( 1996; ). Methanotrophic bacteria. Microbiol Rev 60, 439–471.
    [Google Scholar]
  15. Higgins, I. J., Best, D. J. & Hammond, R. C. ( 1980; ). New findings in methane-utilizing bacteria highlight their importance in the biosphere and their commercial potential. Nature 286, 561–564.[CrossRef]
    [Google Scholar]
  16. Higgins, D. G., Thompson, J. D. & Gibson, T. J. ( 1996; ). Using clustal for multiple sequence alignments. Methods Enzymol 266, 383–402.
    [Google Scholar]
  17. Johnson, J. L. ( 1994; ). Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology, pp. 655–682. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  18. Kalyuzhnaya, M. G., Lidstrom, M. E. & Chistoserdova, L. ( 2004; ). Utility of environmental primers targeting ancient enzymes: methylotroph detection in Lake Washington. Microb Ecol 48, 463–472.[CrossRef]
    [Google Scholar]
  19. King, G. M. ( 1992; ). Ecological aspects of methane oxidation, a key determinant of global methane dynamics. Adv Microbial Ecol 12, 431–468.
    [Google Scholar]
  20. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  21. Miller, A. R., Keener, W. K., Watwood, M. E. & Roberto, F. F. ( 2002; ). A rapid fluorescence-based assay for detecting soluble methane monooxygenase. Appl Microbiol Biotechnol 58, 183–188.[CrossRef]
    [Google Scholar]
  22. Oremland, R. S., Miller, L. G., Culberson, C. W., Connell, T. L. & Jahnke, L. ( 1994; ). Degradation of methyl bromide by methanotrophic bacteria in cell suspensions and soils. Appl Environ Microbiol 60, 3640–3646.
    [Google Scholar]
  23. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  24. Shishkina, V. N., Iurchenko, V. V., Romanovskaia, V. A., Malashenko, Iu. R. & Trotsenko, Iu. A. ( 1976; ). Alternativity of methane assimilation pathways in obligate methylotrophs. Mikrobiologiia 45, 417–419 (in Russian).
    [Google Scholar]
  25. Tabita, F. R. ( 1980; ). Pyridine nucleotide control and subunit structure of phosphoribulokinase from photosynthetic bacteria. J Bacteriol 143, 1275–1280.
    [Google Scholar]
  26. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  27. Vorholt, J. A., Chistoserdova, L., Lidstrom, M. E. & Thauer, R. K. ( 1998; ). The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1. J Bacteriol 180, 5351–5356.
    [Google Scholar]
  28. Vorholt, J. A., Chistoserdova, L., Stolyar, S. M., Thauer, R. K. & Lidstrom, M. E. ( 1999; ). Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases. J Bacteriol 181, 5750–5757.
    [Google Scholar]
  29. Vorholt, J. A., Marx, C. J., Lidstrom, M. E. & Thauer, R. K. ( 2000; ). Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol. J Bacteriol 182, 6645–6650.[CrossRef]
    [Google Scholar]
  30. White, D. C., Davis, W. M., Nickels, J. S., King, J. D. & Bobbie, R. J. ( 1979; ). Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40, 51–62.[CrossRef]
    [Google Scholar]
  31. Whittenbury, R., Phillips, K. C. & Wilkinson, J. F. ( 1970; ). Enrichment, isolation and some properties of methane-utilizing bacteria. J Gen Microbiol 61, 205–218.[CrossRef]
    [Google Scholar]
  32. Wise, M. G., McArthur, J. V. & Shimkets, L. J. ( 2001; ). Methylosarcina fibrata gen. nov., sp. nov. and Methylosarcina quisquiliarum sp. nov., novel type I methanotrophs. Int J Syst Evol Microbiol 51, 611–621.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63405-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error