1887

Abstract

A novel, thermophilic, obligately chemolithoautotrophic, sulfur/thiosulfate-oxidizing bacterium was isolated from subsurface geothermal aquifer water (temperature approximately 70 °C) in the Hishikari gold mine, Japan. Cells of the isolate, designated strain C55, were motile, straight rods with a single polar flagellum. Growth was observed at temperatures between 35 and 62 °C (optimum 50–55 °C; 60 min doubling time) and pH between 5·2 and 7·7 (optimum pH 6·5–7·0). High growth rate of strain C55 was observed on either thiosulfate or elemental sulfur as a sole energy source, with molecular oxygen as the only electron acceptor. None of the organic compounds tested supported or stimulated growth of strain C55. The G+C content of the genomic DNA was 66·9 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain C55 was affiliated to the -, but was distantly related to recognized genera. On the basis of its physiological and molecular properties, strain C55 (=JCM12421=DSM 16629=ATCC BAA-941) is proposed as the type strain of gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63389-0
2005-01-01
2020-05-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550467.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63389-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Baross J. A. 1995; Isolation, growth and maintenance of hyperthermophiles. In Archaea : a Laboratory Manual Thermophiles pp  15–23 Edited by Robb F. T., Place A. R. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  3. Caldwell D. E., Caldwell S. J., Laycock J. P. 1976; Thermothrix thioparus gen. et sp. nov., a facultatively anaerobic facultative chemolithotroph living at neutral pH and high temperature. Can J Microbiol 22:1509–1517 [CrossRef]
    [Google Scholar]
  4. Hayashi N. R., Ishida T., Yokota A., Kodama T., Igarashi Y. 1999; Hydrogenophilus thermoluteolus gen. nov., sp. nov., a thermophilic, facultatively chemolithoautotrophic, hydrogen-oxidizing bacterium. Int J Syst Bacteriol 49:783–786 [CrossRef]
    [Google Scholar]
  5. Huber R., Eder W., Heldwein S., Wanner G., Huber H., Rachel R., Stetter K. O. 1998; Thermocrinis ruber gen. nov., sp. nov., a pink-filament-forming hyperthermophilic bacterium isolated from Yellowstone National Park. Appl Environ Microbiol 643576–3583
    [Google Scholar]
  6. Hugenholtz P., Pitulle C., Hershberger K. L., Pace N. R. 1998; Novel division level bacterial diversity in a Yellowstone hot spring. J Bacteriol 180:366–376
    [Google Scholar]
  7. Inagaki F., Takai K., Hirayama H., Yamato Y., Nealson K. H., Horikoshi K. 2003; Distribution and phylogenetic diversity of the subsurface microbial community in a Japanese epithermal gold mine. Extremophiles 7:307–317 [CrossRef]
    [Google Scholar]
  8. Izawa E., Urashima Y., Ibaraki K., Suzuki R., Yokoyama T., Kawasaki K., Koga A., Taguchi S. 1990; The Hishikari gold deposit: high-grade epithermal veins in Quaternary volcanics of southern Kyushu, Japan. J Geochem Explor 36:1–56 [CrossRef]
    [Google Scholar]
  9. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E. 2000; Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959 [CrossRef]
    [Google Scholar]
  10. Manaia C. M., Nogales B., Nunes O. C. 2003; Tepidiphilus margaritifer gen. nov., sp. nov., isolated from a thermophilic aerobic digester. Int J Syst Evol Microbiol 53:1405–1410 [CrossRef]
    [Google Scholar]
  11. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  12. Mechichi T., Stackebrandt E., Gad'on N., Fuchs G. 2002; Phylogenetic and metabolic diversity of bacteria degrading aromatic compounds under denitrifying conditions, and description of Thauera phenylacetica sp.nov., Thauera aminoaromatica sp. nov., and Azoarcus buckelii sp. nov. Arch Microbiol 178:26–35 [CrossRef]
    [Google Scholar]
  13. Moreira C., Rainey F. A., Nobre M. F., da Silva M. T., da Costa M. S. 2000; Tepidimonas ignava gen. nov., sp. nov. a new chemolithoheterotrophic and slightly thermophilic member of the β - Proteobacteria . Int J Syst Evol Microbiol 50:735–742 [CrossRef]
    [Google Scholar]
  14. Odintsova E. V., Jannasch H. W., Mamone J. A., Langworthy T. A. 1996; Thermothrix azorensis sp. nov., an obligately chemolithoautotrophic, sulfur-oxidizing, thermophilic bacterium. Int J Syst Bacteriol 46:422–428 [CrossRef]
    [Google Scholar]
  15. Reysenbach A.-L., Wickham G. S., Pace N. R. 1994; Phylogenetic analysis of the hyperthermophilic pink filament community in Octopus Spring. Yellowstone National Park. Appl Environ Microbiol 60:2113–2119
    [Google Scholar]
  16. Shooner F., Bousquet J., Tyagi R. D. 1996; Isolation, phenotypic characterization, and phylogenetic position of a novel, facultatively autotrophic, moderately thermophilic bacterium, Thiobacillus thermosulfatus sp. nov. Int J Syst Bacteriol 46:409–415 [CrossRef]
    [Google Scholar]
  17. Stöhr R., Waberski A., Liesack W., Völker H., Wehmeyer U., Thomm M. 2001; Hydrogenophilus hirschii sp. nov., a novel thermophilic hydrogen-oxidizing β -proteobacterium isolated from Yellowstone National Park. Int J Syst Evol Microbiol 51:481–488
    [Google Scholar]
  18. Takai K., Komatsu T., Horikoshi K. 2001; Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51:1425–1435
    [Google Scholar]
  19. Takai K., Hirayama H., Sakihama Y., Inagaki F., Yamato Y., Horikoshi K. 2002; Isolation and metabolic characteristics of previously uncultured members of the order Aquificales in a subsurface gold mine. Appl Environ Microbiol 68:3046–3054 [CrossRef]
    [Google Scholar]
  20. Takai K., Kobayashi H., Nealson K. H., Horikoshi K. 2003; Sulfurihydrogenibium subterraneum gen. nov., sp. nov., from a subsurface hot aquifer.. Int J Syst Evol Microbiol 53:823–827 [CrossRef]
    [Google Scholar]
  21. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  22. Tarlera S., Denner E. B. M. 2003; Sterolibacterium denitrificans gen. nov., sp. nov., a novel cholesterol-oxidizing, denitrifying member of the β - Proteobacteria . Int J Syst Evol Microbiol 53:1085–1091 [CrossRef]
    [Google Scholar]
  23. Wood A. P., Kelly D. P. 1988; Isolation and physiological characterisation of Thiobacillus aquaesulis sp. nov., a novel facultatively autotrophic moderate thermophile. Arch Microbiol 149:339–343 [CrossRef]
    [Google Scholar]
  24. Yamamoto H., Hiraishi A., Kato K., Chiura H. X., Maki Y., Shimizu A. 1998; Phylogenetic evidence for the existence of novel thermophilic bacteria in hot spring sulfur-turf microbial mats in Japan. Appl Environ Microbiol 64:1680–1687
    [Google Scholar]
  25. Zillig W., Holz I., Janekovic D. 7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63389-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63389-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error