sp. nov., a xylanase-producing bacterium isolated from a rice field in the Ebro River delta Free

Abstract

A Gram-positive, endospore-forming, xylanase-producing bacterium isolated from a rice field was studied taxonomically. The strain grows at 10–40 °C and in the presence of lysozyme or 5 % (w/v) NaCl. Chemotaxonomic analysis revealed that MK-7 was the predominant menaquinone of the isolated strain, while the major fatty acid was anteiso-C. Comparison of 16S rRNA gene sequences showed that strain BP-23 fell within the radiation of the cluster comprising species. The highest 16S rRNA gene sequence similarities were found with (97·4 %), (97·1 %) and (96·9 %). The DNA–DNA relatedness of strain BP-23 with respect to these three species was very low (32·7, 31·6 and 23·0 %, respectively). On the basis of phenotypic and genotypic data, strain BP-23 should be placed in the genus and designated a novel species, for which the name sp. nov. is proposed. The type strain is BP-23 (=CECT 7022=DSM 15478).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63383-0
2005-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550935.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63383-0&mimeType=html&fmt=ahah

References

  1. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260
    [Google Scholar]
  3. Barney M., Volgyi A., Navarro A., Ryder D. 2001; Riboprinting and 16S rRNA gene sequencing for identification of brewery Pediococcus isolates. Appl Environ Microbiol 67:553–560 [CrossRef]
    [Google Scholar]
  4. Berge O., Guinebretière M. H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616
    [Google Scholar]
  5. Blanco A., Pastor F. I. J. 1993; Characterization of cellulase-free xylanases from the newly isolated Bacillus sp. strain BP-23. Can J Microbiol 39:1162–1166 [CrossRef]
    [Google Scholar]
  6. Blanco A., Vidal T., Colom J. F., Pastor F. I. J. 1995; Purification and properties of xylanase A from alkali-tolerant Bacillus sp. strain BP-23. Appl Environ Microbiol 61:4468–4470
    [Google Scholar]
  7. Blanco A., Díaz P., Zueco J., Parascandola P., Pastor F. I. J. 1999; A multidomain xylanase from a Bacillus sp. with a region homologous to thermostabilizing domains of thermophilic enzymes. Microbiology 145:2163–2170 [CrossRef]
    [Google Scholar]
  8. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  9. Bruce J. 1996; Automated system rapidly identifies and characterizes microorganisms in food. Food Technol 50:77–81
    [Google Scholar]
  10. Cashion P., Hodler-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  11. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  12. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  13. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  14. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  15. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5.1 Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  16. Gallardo O., Diaz P., Pastor F. I. J. 2003; Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl Microbiol Biotechnol 61:226–233 [CrossRef]
    [Google Scholar]
  17. Gordon R. E., Haynes W. C., Pang C. H. 1973 The Genus Bacillus , handbook no 427 Washington, DC: US Department of Agriculture;
    [Google Scholar]
  18. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  19. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD system 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  20. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  21. Kämpfer P. 2002; Whole-cell fatty acid analysis in the systematics of Bacillus and related genera. In Applications and Systematics of Bacillus and Relatives pp  271–299 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell;
    [Google Scholar]
  22. Kucheryava N., Fiss M., Auling G., Kroppenstedt R. M. 1999; Isolation and characterization of epiphytic bacteria from the phyllosphere of apple, antagonistic in vitro to Venturia inaequalis , the causal agent of apple scab. Syst Appl Microbiol 22:472–478 [CrossRef]
    [Google Scholar]
  23. Maidak B. L., Cole J. R., Parker C. T. Jr 11 other authors 1999; A new version of the RDP (Ribosomal Database Project). Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Outtrup H., Jørgensen S. T. 2002; The importance of Bacillus species in the production of industrial enzymes. In Applications and Systematics of Bacillus and Relatives pp  206–218 Edited by Berkeley R., Heyndrickx M., Logan N., De Vos P. Oxford: Blackwell;
    [Google Scholar]
  26. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  27. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997a; Transfer of Bacillus alginolyticus , Bacillus chondroitinus , Bacillus curdlanolyticus , Bacillus glucanolyticus , Bacillus kobensis , and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef]
    [Google Scholar]
  28. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997b; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov. Int J Syst Bacteriol 47:299–306 [CrossRef]
    [Google Scholar]
  29. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  30. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  31. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63383-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63383-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed