1887

Abstract

Two novel anaerobes, strains GB4-38 and SB9-1, were isolated from an upflow anaerobic sludge blanket reactor for treating bean-curd farm wastewater and lotus field mud, respectively. The strains degraded straight-chain fatty acids with 4–8 carbon atoms in syntrophic association with methanogens and converted 1 mol butyrate into about 2 mol acetate and presumably 2 mol H. None of the branched-chain fatty acids tested could be degraded. Benzoate was not degraded. Fumarate, sulfate, thiosulfate, sulfur and nitrate did not serve as electron acceptors for butyrate degradation. In the absence of a methanogen partner, strain GB4-38 grew on crotonate in pure culture; the generation time was about 5 h at 37 °C. However, strain SB9-1 grew on butyrate plus pentenoate, but not crotonate, in pure culture and the generation time was 18 h at 37 °C. Cells of GB4-38 and SB9-1 were straight rods and stained Gram-negative. The major cellular fatty acids of GB4-38 were C (29·74 %), C (17·00 %), C 5 (16·63 %) and isoC I (15·34 %). -Diaminopimelic acid existed in the cellular peptidoglycan. The genomic DNA G+C content of strain GB4-38 was 43·2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences supported clustering of the two strains with syntrophic bacterial species of the genus (89·6–92·4 % sequence similarity), but phenotypic, chemotaxonomic and genetic characters differentiated the two strains from members of this genus. Therefore, it is proposed that the two strains are representatives of a novel species, sp. nov. The type strain is GB4-38 (=CGMCC 1.5013=DSM 16215).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63372-0
2005-03-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550799.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63372-0&mimeType=html&fmt=ahah

References

  1. Beaty, P. S. & McInerney, M. J. ( 1987; ). Growth of Syntrophomonas wolfei in pure culture on crotonate. Arch Microbiol 147, 389–393.[CrossRef]
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 143–153.[CrossRef]
    [Google Scholar]
  3. Henson, J. M., McInerney, M. J., Beaty, P. S., Nickels, J. & White, D. C. ( 1988; ). Phospholipid fatty acid composition of the syntrophic anaerobic bacterium Syntrophomonas wolfei. Appl Environ Microbiol 54, 1570–1574.
    [Google Scholar]
  4. Hungate, R. E. ( 1969; ). A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  5. Jackson, B. E., Bhupathiraju, V. K., Tanner, R. S., Woese, C. R. & McInerney, M. J. ( 1999; ). Syntrophus aciditrophicus sp. nov., a new anaerobic bacterium that degrades fatty acids and benzoate in syntrophic association with hydrogen-using microorganisms. Arch Microbiol 171, 107–114.[CrossRef]
    [Google Scholar]
  6. Lorowitz, W. H., Zhao, H. & Bryant, M. P. ( 1989; ). Syntrophomonas wolfei subsp. saponavida subsp. nov., a long-chain fatty-acid-degrading, anaerobic, syntrophic bacterium; Syntrophomonas wolfei subsp. wolfei subsp. nov.; and emended descriptions of the genus and species. Int J Syst Bacteriol 39, 122–126.[CrossRef]
    [Google Scholar]
  7. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  8. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 4, 109–118.
    [Google Scholar]
  9. McInerney, M. J. ( 1992; ). The genus Syntrophomonas, and other syntrophic bacteria. In The Prokaryotes, 2nd edn, pp. 2048–2057. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  10. McInerney, M. J., Bryant, M. P. & Pfennig, N. ( 1979; ). Anaerobic bacterium that degrades fatty acids in syntrophic association with methanogens. Arch Microbiol 122, 129–135.[CrossRef]
    [Google Scholar]
  11. McInerney, M. J., Bryant, M. P., Hespell, R. B. & Costerton, J. W. ( 1981; ). Syntrophomonas wolfei gen. nov., sp. nov., an anaerobic, syntrophic, fatty acid-oxidizing bacterium. Appl Environ Microbiol 41, 1029–1039.
    [Google Scholar]
  12. Reynolds, E. S. ( 1963; ). The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17, 208–212.[CrossRef]
    [Google Scholar]
  13. Rhuland, L. E., Work, E., Denman, R. F. & Hoare, D. S. ( 1955; ). The behavior of the isomers of α,ε-diaminopimelic acid on paper chromatograms. J Am Chem Soc 77, 4844–4846.[CrossRef]
    [Google Scholar]
  14. Roy, F., Samain, E., Dubourguier, H. & Albagnac, G. ( 1986; ). Syntrophomonas sapovorans sp. nov., a new obligately proton reducing anaerobe oxidizing saturated and unsaturated long chain fatty acids. Arch Microbiol 145, 142–147.[CrossRef]
    [Google Scholar]
  15. Schink, B. ( 1997; ). Energetics of syntrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev 61, 262–280.
    [Google Scholar]
  16. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H. ( 2000; ). Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef]
    [Google Scholar]
  17. Stieb, M. & Schink, B. ( 1985; ). Anaerobic oxidation of fatty acids by Clostridium bryantii sp. nov., a sporeforming, obligately syntrophic bacterium. Arch Microbiol 140, 387–390.[CrossRef]
    [Google Scholar]
  18. Svetlitshnyi, V., Rainey, F. & Wiegel, J. ( 1996; ). Thermosyntropha lipolytica gen. nov., sp. nov., a lipolytic, anaerobic, alkalitolerant, thermophilic bacterium utilizing short- and long-chain fatty acids in syntrophic coculture with a methanogenic archaeum. Int J Syst Bacteriol 46, 1131–1137.[CrossRef]
    [Google Scholar]
  19. Touzel, J. P. & Albagnac, G. ( 1983; ). Isolation and partial characterization of Methanococcus mazei strain MC3. FEMS Microbiol Lett 16, 241–245.[CrossRef]
    [Google Scholar]
  20. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  21. Zhang, C., Liu, X. & Dong, X. ( 2004; ). Syntrophomonas curvata sp. nov., an anaerobe that degrades fatty acids in co-culture with methanogens. Int J Syst Evol Microbiol 54, 969–973.[CrossRef]
    [Google Scholar]
  22. Zhao, H., Yang, D., Woese, C. R. & Bryant, M. P. ( 1990; ). Assignment of Clostridium bryantii to Syntrophospora bryantii gen. nov., comb. nov. on the basis of a 16S rRNA sequence analysis of its crotonate-grown pure culture. Int J Syst Bacteriol 40, 40–44.[CrossRef]
    [Google Scholar]
  23. Zhao, H., Yang, D., Woese, C. R. & Bryant, M. P. ( 1993; ). Assignment of fatty acid-β-oxidizing syntrophic bacteria to Syntrophomonadaceae fam. nov. on the basis of 16S rRNA sequence analysis. Int J Syst Bacteriol 43, 278–286.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63372-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63372-0
Loading

Data & Media loading...

Supplements

Cell morphology and ultrastructure of strain GB4-38 . Negatively stained cell showing flagella (left) and ultrathin section revealing the atypical Gram-positive cell wall structure (right).

IMAGE

Cell morphology and ultrastructure of strain GB4-38 . Negatively stained cell showing flagella (left) and ultrathin section revealing the atypical Gram-positive cell wall structure (right).

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error