sp. nov., a novel alkalitolerant bacterium from the rhizosphere of in Patagonia, Argentina Free

Abstract

A Gram-positive, rod-shaped, spore-forming bacterium (PAT 05) was isolated from the rhizosphere of the perennial shrub in north-eastern Patagonia, Argentina. Its overall biochemical and physiological characteristics indicated that this strain should be placed in the alkaliphilic group. Strain PAT 05 grew at pH 7–10 (optimum pH 8), but not at pH 6. Its DNA G+C content was 39·7 mol%. Sequence analysis of the 16S rRNA gene of PAT 05 revealed the closest match (99·6 % similarity) with sp. DSM 8714. The highest level of DNA–DNA relatedness (88·6 %) was also found with this strain. On the basis of 16S rRNA gene sequence similarity and phylogenetic analysis, G+C content and DNA–DNA hybridization data, strain PAT 05 is related at the species level to sp. DSM 8714, a member of a group referred as phenon 4a by Nielsen . [Nielsen, P., Fritze, D. & Priest, F. G. (1995). , 1745–1761] , which still lacks taxonomic standing. These results support the proposal of strain PAT 05 (=DSM 16117=ATCC BAA-965) as the type strain of sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63348-0
2005-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550443.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63348-0&mimeType=html&fmt=ahah

References

  1. Agnew M. D., Koval S. F., Jarrell K. F. 1995; Isolation and characterization of novel alkaliphiles from bauxite-processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230 [CrossRef]
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller M., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  4. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Fritze D. 1996; Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46:98–101 [CrossRef]
    [Google Scholar]
  9. Fritze D., Flossdorf J., Claus D. 1990; Taxonomy of alkaliphilic Bacillus strains. Int J Syst Bacteriol 40:92–97 [CrossRef]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  14. Li Z., Kawamura Y., Shida O., Yamagata S., Deguchi T., Ezaki T. 2002; Bacillus okuhidensis sp. nov., isolated from the Okuhida spa area of Japan. Int J Syst Evol Microbiol 52:1205–1209 [CrossRef]
    [Google Scholar]
  15. Mazzarino M. J., Bertiller M. B., Sain C., Laos F., Coronato F. 1996; Spatial patterns of nitrogen availability, mineralization, and immobilization in northern Patagonia, Argentina. Arid Soil Res Rehabil 10:295–309 [CrossRef]
    [Google Scholar]
  16. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–66 [CrossRef]
    [Google Scholar]
  17. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  18. Ntougias S., Russell N. J. 2000; Bacillus sp. WW3-SN6, a novel facultatively alkaliphilic bacterium isolated from the washwaters of edible olives. Extremophiles 4:201–208 [CrossRef]
    [Google Scholar]
  19. Olivera N., Sequeiros C., Marguet E. R., Breccia J. D. 2003; Extracellular proteolytic activity characterization of the alkaliphilic Bacillus sp. PAT 05 isolated from Patagonia arid soils, Argentina. In SINAFERM pp  1–7 article 148 Edited by Schmidell Netto W. Florianópolis, Brazil: Universidade Federal de Santa Catarina Press;
    [Google Scholar]
  20. Senesi S., Celandroni F., Tavanti A., Ghelardi E. 2001; Molecular characterization and identification of Bacillus clausii strains marketed for use in oral bacteriotherapy. Appl Environ Microbiol 67:834–839 [CrossRef]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis , sp. nov., and Bacillus selenitireducens , sp. nov.: two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  23. Swofford D. L. 2001; paup: Phylogenetic analysis using parsimony, Version 4.0b10. Distributed by the Illinois Natural History Survey. Champaign, IL, USA:
  24. Tesche B., Schmiady H. 1985; Comparative electron microscopic studies of single biomolecules negatively stained and freeze-dried metal-shadowed. Ultramicroscopy 16:423–435 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  26. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  27. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
  28. Yumoto I., Yamaga S., Sogabe Y., Nodasaka Y., Matsuyama H., Nakajima K., Suemori A. 2003; Bacillus krulwichiae sp. nov., a halotolerant obligate alkaliphile that utilizes benzoate and m -hydroxybenzoate. Int J Syst Evol Microbiol 53:1531–1536 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63348-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63348-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed