1887

Abstract

A novel thermophilic, acidophilic bacterium, designated strain Pd55, was isolated from a self-temperature-recording colonization system deployed in a hydrothermal diffusing flow (maximum temperature of 78 °C) at the TOTO caldera in the Mariana Arc. Cells of strain Pd55 were motile, short rods with a single polar flagellum. Growth was observed between 30 and 68 °C (optimum growth at 50 °C; 120 min doubling time) and between (initial) pH 4·2 and 7·0 (optimum at pH 5·2). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as sole energy source and carbon dioxide as sole carbon source. Elemental sulfur served as the sole electron acceptor to support growth. The G+C content of the genomic DNA was 34·0 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate was related to members of the genera and , although it appeared to be a novel lineage prior to the divergence between and . Strain Pd55 could also be differentiated from and species on the basis of its physiological properties. It is, therefore, proposed that strain Pd55 (=JCM 12420=DSM 16356) represents the type strain of a novel species in a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63330-0
2005-01-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550183.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63330-0&mimeType=html&fmt=ahah

References

  1. Alain, K., Querellou, J., Lesongeur, F., Pignet, P., Crassous, P., Raguénès, G., Cueff, V. & Cambon-Bonavita, M.-A. ( 2002; ). Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. Int J Syst Evol Microbiol 52, 1317–1323.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: re-evaluation of a unique biological group. Microb Rev 43, 260–296.
    [Google Scholar]
  4. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J. & Ouellette, B. F. F. ( 1998; ). GenBank. Nucleic Acids Res 26, 1–7.[CrossRef]
    [Google Scholar]
  5. Campbell, B. J., Jeanthon, C., Kostka, J. E., Luther, G. W., III & Cary, S. C. ( 2001; ). Growth and phylogenetic properties of novel bacteria belonging to the epsilon subdivision of the Proteobacteria enriched from Alvinella pompejana and deep-sea hydrothermal vents. Appl Environ Microbiol 67, 4566–4572.[CrossRef]
    [Google Scholar]
  6. DeLong, E. F. ( 1992; ). Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89, 5685–5689.[CrossRef]
    [Google Scholar]
  7. Gamo, T., Okamura, K., Charlou, J.-L., Urabe, T., Auzende, J.-M., Ishibashi, J., Shitashima, K. & Kodama, Y. ( 1997; ). Acidic and sulfate-rich hydrothermal fluid from the Manus Basin, Papua New Guinea. Geology 25, 139–142.[CrossRef]
    [Google Scholar]
  8. Gamo, T., Masuda, H., Yamanaka, T. & 13 other authors ( 2004; ). Discovery of a new hydrothermal venting site in the southernmost Mariana Arc: Al-rich hydrothermal plumes and white smoker activity associated with biogenic methane. Geochemical J (in press).
    [Google Scholar]
  9. Gillis, M., Vandamme, P., De Vos, P., Swings, J. & Kersters, K. ( 2001; ). Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology, 2nd edn, pp. 43–48. Edited by D. R. Boone & R. W. Castenholz. New York: Springer.
  10. Hugenholtz, P. ( 2002; ). Exploring prokaryotic diversity in the gemonic era. Genome Biol 3, REVIEWS0003.
    [Google Scholar]
  11. Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003; ). Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing ε-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int J Syst Evol Microbiol 53, 1801–1805.[CrossRef]
    [Google Scholar]
  12. Inagaki, F., Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004; ). Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the ε-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. Int J Syst Evol Microbiol 54, 1477–1482.[CrossRef]
    [Google Scholar]
  13. Lane, D. J. ( 1991; ). 16S/23S sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–176. Edited by E. Stackebrandt & M. Goodfellow. New York: Wiley.
  14. Ludwig, W., Strunk, O., Westram, R. & 29 other authors ( 2004; ). arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef]
    [Google Scholar]
  15. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  16. Miroshnichenko, M. L., Kostrikina, N. A., L'Haridon, S., Jeanthon, C., Hippe, H., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2002; ). Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing ε-proteobacterium isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 52, 1299–1304.[CrossRef]
    [Google Scholar]
  17. Miroshnichenko, M. L., L'Haridon, S., Schumann, P., Spring, S., Bonch-Osmolovskaya, E. A., Jeanthon, C. & Stackebrandt, E. ( 2004; ). Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class ‘Epsilonproteobacteria’, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 54, 41–45.[CrossRef]
    [Google Scholar]
  18. Porter, K. G. & Feig, Y. S. ( 1980; ). The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25, 943–948.[CrossRef]
    [Google Scholar]
  19. Takai, K. & Horikoshi, K. ( 2000; ). Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4, 9–17.[CrossRef]
    [Google Scholar]
  20. Takai, K., Inoue, A. & Horikoshi, K. ( 1999; ). Thermaerobacter marianensis gen. nov., sp. nov., an aerobic extremely thermophilic marine bacterium from the 11,000 m deep Mariana Trench. Int J Syst Bacteriol 49, 619–628.[CrossRef]
    [Google Scholar]
  21. Takai, K., Komatsu, T. & Horikoshi, K. ( 2001; ). Hydrogenobacter subterraneus sp. nov., an extremely thermophilic, heterotrophic bacterium unable to grow on hydrogen gas, from deep subsurface geothermal water. Int J Syst Evol Microbiol 51, 1425–1435.
    [Google Scholar]
  22. Takai, K., Inagaki, F., Nakagawa, S., Hirayama, H., Nunoura, T., Sako, Y., Nealson, K. H. & Horikoshi, K. ( 2003a; ). Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields. FEMS Microbiol Lett 218, 167–174.
    [Google Scholar]
  23. Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. ( 2003b; ). Deferribacter desulfuricans sp. nov., a novel sulfur-, nitrate- and arsenate-reducing thermophile isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 839–846.[CrossRef]
    [Google Scholar]
  24. Takai, K., Nakagawa, S., Sako, Y. & Horikoshi, K. ( 2003c; ). Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. Int J Syst Evol Microbiol 53, 1947–1954.[CrossRef]
    [Google Scholar]
  25. Takai, K., Nealson, K. H. & Horikoshi, K. ( 2004a; ). Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the ε-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. Int J Syst Evol Microbiol 54, 25–32.[CrossRef]
    [Google Scholar]
  26. Takai, K., Oida, H., Suzuki, Y., Hirayama, H., Nakagawa, S., Nunoura, T., Inagaki, F., Nealson, K. H. & Horikoshi, K. ( 2004b; ). Spatial distribution of marine crenarchaeota group I in the vicinity of deep-sea hydrothermal systems. Appl Environ Microbiol 70, 2404–2413.[CrossRef]
    [Google Scholar]
  27. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  28. Tsunogai, U., Kouzuma, F., Nakayama, N., Gamo, T. & Kaneko, M. ( 2002; ). Development of multi-bottle gas-tight sampler WHATS for sampling sea-floor venting fluids. JAMSTEC J Deep Sea Res 21, 91–95. (in Japanese with an English abstract).
    [Google Scholar]
  29. Zillig, W., Holz, I., Janekovic, D. & 7 other authors ( 1990; ). Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172, 3959–3965.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63330-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63330-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 183–189

An electron micrograph of strain Pd55 (Fig. A) and graphs showing the effects of temperature, pH and NaCl concentration on the growth rate of strain Pd55 (Fig. Ba–c) are available to download. [PDF](1220KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error