1887

Abstract

A novel marine bacterium, strain KMM 6050, was isolated from the sea urchin , which inhabits the Sea of Japan. The strain studied was strictly aerobic, heterotrophic, yellow–orange-pigmented, motile by gliding, Gram-negative and oxidase-, catalase-, -galactosidase- and alkaline phosphatase-positive. The results of 16S rRNA gene sequence analysis showed that strain KMM 6050 occupies a distinct lineage within the family and is most closely related to the species and (sequence similarity of 92·5–92·6 %). The DNA G+C content of KMM 6050 was 39·6 mol%. The major respiratory quinone was MK-6. The predominant fatty acids were i15 : 0, a15 : 0, 15 : 0, i16 : 1, i16 : 0, i16 : 0 3-OH and i17 : 0 3-OH. On the basis of phenotypic, chemotaxonomic, genotypic and phylogenetic characteristics, the novel bacterium has been assigned to the genus gen. nov., as sp. nov. The type strain is KMM 6050 (=KCTC 12278=NBRC 100593=LMG 22585).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63314-0
2005-01-01
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550391.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63314-0&mimeType=html&fmt=ahah

References

  1. Alain K., Olagnon M., Desbruyéres D., Pagé A., Barbier G., Junifer S. K., Quérellou M., Cambon-Bonavita M.-A. 2002; Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal vent polychaete Paralvinella palmiformis . FEMS Microbiol Ecol 42:463–476 [CrossRef]
    [Google Scholar]
  2. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int J Syst Evol Microbiol 50:1861–1868
    [Google Scholar]
  3. Bowman J. P., McCammon S. A., Lewis T., Skerratt J. H., Brown J. L., Nichols D. S., McMeekin T. A. 1998; Psychroflexus torquis gen. nov., sp. nov., a psychrophilic species from Antarctic sea ice, and reclassification of Flavobacterium gondwanense (Dobson et al . 1993) as Psychroflexus gondwanense gen. nov., comb. nov. Microbiology 144:1601–1609 [CrossRef]
    [Google Scholar]
  4. Cooney R. P., Pantos O., Le Tisser M. D. A., Barer M. R., O'Donnell A. G., Bythell J. C. 2002; Characterization of the bacterial consortium associated with black band disease in coral using molecular microbiological techniques. Environ Microbiol 4:401–413 [CrossRef]
    [Google Scholar]
  5. Dobson S. J., Colwell R. R., McMeekin T. A., Franzmann P. D. 1993; Direct sequencing of the polymerase chain reaction-amplified 16S rRNA gene of Flavobacterium gondwanense sp. nov. and Flavobacterium salegens sp. nov., two new species from a hypersaline Antarctic lake. Int J Syst Bacteriol 43:77–83 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  7. Glöckner F. O., Fuchs B. M., Amann R. 1999; Bacterioplankton compositions of lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl Environ Microbiol 65:3721–3726
    [Google Scholar]
  8. Hanzawa N., Nakanishi K., Nishijima M., Saga N. 1998; 16S rDNA-based phylogenetic analysis of marine flavobacteria that induce algal morphogenesis. J Mar Biotechnol 6:80–82
    [Google Scholar]
  9. Kim S. B., Falconer C., Williams E., Goodfellow M. 1998; Streptomyces thermocarboxydovorans sp. nov. and Streptomyces thermocarboxydus sp. nov., two moderately thermophilic carboxydotrophic species isolated from soil. Int J Syst Bacteriol 48:59–68 [CrossRef]
    [Google Scholar]
  10. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  11. López-García P., Gaill F., Moreira D. 2002; Wide bacterial diversity associated with tubes of the vent worm Riftia pachyptila . Environ Microbiol 4:204–215 [CrossRef]
    [Google Scholar]
  12. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  14. McCammon S. A., Bowman J. P. 2000; Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp.nov., and Flavobacterium xanthum sp. nov., nom.rev. and reclassification of [ Flavobacterium ] salegens as Salegentibacter salegens gen. nov., comb. nov. Int J Syst Evol Microbiol 50:1055–1063 [CrossRef]
    [Google Scholar]
  15. Nedashkovskaya O. I., Kim S. B., Han S. K. 7 other authors 2003a; Mesonia algae gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from the green alga Acrosiphonia sonderi (Kütz) Kornm. Int J Syst Evol Microbiol 53:1967–1971 [CrossRef]
    [Google Scholar]
  16. Nedashkovskaya O. I., Suzuki M., Vysotskii M. V., Mikhailov V. V. 2003b; Reichenbachia agariperforans gen. nov., sp. nov. a novel marine bacterium in the phylum Cytophaga–Flavobacterium–Bacteroides . Int J Syst Evol Microbiol 53:81–85 [CrossRef]
    [Google Scholar]
  17. Nedashkovskaya O. I., Suzuki M., Vancanneyt M., Cleenwerck I., Zhukova N. V., Vysotskii M. V., Mikhailov V. V., Swings J. 2004; Salegentibacter holothuriorum sp. nov., isolated from edible holothurian Apostichopus japonicus . Int J Syst Evol Microbiol 54:1107–1110 [CrossRef]
    [Google Scholar]
  18. Patel P., Callow M. E., Joint I., Callow J. A. 2003; Specificity in the settlement – modifying response of bacterial biofilms towards zoospores of the marine alga. Enteromorpha . Environ Microbiol 5:338–349 [CrossRef]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  20. Webster N. S., Negri A. P., Munro M. M., Battershill C. N. 2004; Diverse microbial communities inhabit Antarctic sponges. Environ Microbiol 6:288–300 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63314-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63314-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error