1887

Abstract

Two Gram-positive, endospore-forming bacterial strains, CR-502 and CR-14b, which produce surfactant molecules are described. Phenotypic tests and phylogenetic analyses showed these strains to be members of the genus and related to the species , , , and , although they differ from these species in a number of phenotypic characteristics. DNA–DNA hybridization confirmed that they show less than 20 % hybridization with the above-mentioned species and therefore represent a novel species of . The DNA G+C content is 46·4 mol% in strain CR-502 and 46·1 mol% in strain CR-14b. The main fatty acids in strain CR-502 are 15 : 0 anteiso (32·70 %), 15 : 0 iso (29·86 %) and 16 : 0 (13·41 %). The main quinone in strain CR-502 is MK-7 (96·6 %). In the light of the polyphasic evidence gathered in this study, it is proposed that these strains be classified as a novel species of the genus , with the name sp. nov. The type strain (CR-502=CECT 5686=LMG 22478) was isolated from a brackish water sample taken from the river Vélez at Torredelmar in Málaga, southern Spain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63310-0
2005-01-01
2020-08-07
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550191.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63310-0&mimeType=html&fmt=ahah

References

  1. Banat J. M., Makkar R. S., Cameotra S. S. 2000; Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53:495–508 [CrossRef]
    [Google Scholar]
  2. Bodour A. A., Miller-Maier R. M. 1998; Application of a modified drop-collapse technique for surfactant quantitation and screening of biosurfactant-producing microorganisms. J Microbiol Methods 32:273–280 [CrossRef]
    [Google Scholar]
  3. Bouchotroch S., Quesada E., Del Moral A., Llamas I., Béjar V. 2001; Halomonas maura sp. nov., a novel, moderately halophilic, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 51:1625–1632 [CrossRef]
    [Google Scholar]
  4. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  5. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1994 Manual for the Identification of Medical Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Ferragut C., Leclerc H. 1976; Étude comparative des méthodes de détermination du Tm de l'ADN bactérien. Ann Microbiol 127:223–235 (in French
    [Google Scholar]
  8. Harwood C. R. 1989; Bacillus . Biotechnology Handbooks 2 Edited by Atkinson T., Sherwood R. F. New York & London: Plenum;
    [Google Scholar]
  9. Jain D. K., Collins-Thomson D. L., Lee H., Trevors J. T. 1991; A drop-collapsing test for screening surfactant-producing microorganisms. J Microbiol Methods 13:271–279 [CrossRef]
    [Google Scholar]
  10. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  11. Lind E., Ursing J. 1986; Clinical strains of Enterobacter agglomerans (synonyms, Erwinia herbicola , Erwinia milletiae ) identified by DNA-DNA hybridization. Acta Pathol Microbiol Immunol Scand Sect B 94:205–213
    [Google Scholar]
  12. Logan N. A., Berkeley R. C. W. 1984; Identification of Bacillus strains using the API system. J Gen Microbiol 130:1871–1882
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–212 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  15. Moraine R. A., Rogovin P. 1966; Kinetics of polysaccharide B-1459 fermentation. Biotechnol Bioengin 8:511–524 [CrossRef]
    [Google Scholar]
  16. Nakamura L. K. 1989; Taxonomic relationship of black-pigmented Bacillus subtilis strains and a proposal for Bacillus atrophaeus sp. nov. Int J Syst Bacteriol 39:295–300 [CrossRef]
    [Google Scholar]
  17. Nakamura L. K., Roberts M. S., Cohan F. M. 1999; Relationship of Bacillus subtilis clades associated with strains 168 and W23: a proposal for Bacillus subtilis subsp.subtilis subsp. nov. and Bacillussubtilis subsp. spizizenii subsp. nov.. Int J Syst Bacteriol 49:1211–1215 [CrossRef]
    [Google Scholar]
  18. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists , 2nd edn. pp  277–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  19. Owen R. J., Pitcher D. 1985; Current methods for estimating DNA composition and levels of DNA-DNA hybridization. In Chemical Methods in Bacterial Systematics pp  67–93 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  20. Pinchuk I. V., Bressollier P., Sorokulova I. B., Verneuil B., Urdaci M. 2002; Amicoumacin antibiotic production and genetic diversity of Bacillus subtilis strains isolated from different habitats. Res Microbiol 153:269–276 [CrossRef]
    [Google Scholar]
  21. Priest F. G., Goodfellow M., Shute L. A., Berkeley R. C. W. 1987; Bacillus amyloliquefaciens sp. nov., nom. rev.. Int J Syst Bacteriol 3769–71 [CrossRef]
    [Google Scholar]
  22. Roberts M. S., Nakamura L. K., Cohan F. M. 1994; Bacillus mojavensis sp. nov., distinguishable from Bacillus subtilis by sexual isolation, divergence in DNA sequence and differences in fatty acid composition. Int J Syst Bacteriol 44:256–264 [CrossRef]
    [Google Scholar]
  23. Roberts M. S., Nakamura L. K., Cohan F. M. 1996; Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis isolated from soil in Death Valley, California. Int J Syst Bacteriol 46:470–475 [CrossRef]
    [Google Scholar]
  24. Rodríguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1981; Characteristics of the heterotropic bacterial populations in hypersaline environments of different salt concentration. Microbiol Ecol 7:235–243 [CrossRef]
    [Google Scholar]
  25. Saiki R. K., Gelfand D. H., Stoffel S., Scharf S. J., Higuchi R., Horn G. T., Mullis K. B., Erlich H. A. 1988; Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239:487–491 [CrossRef]
    [Google Scholar]
  26. Sneath P. H. A., Johnson R. 1972; The influence on numerical taxonomic similarities of errors in microbiological test. J Gen Microbiol 72:377–392 [CrossRef]
    [Google Scholar]
  27. Sneath P. H. A., Sokal R. R. 1973 Numerical Taxonomy. The Principles and Practice of Numerical Classification San Francisco: W. H. Freeman;
    [Google Scholar]
  28. Sokal R. R., Michener C. D. 1958; A statistical method for evaluating systematic relationships. Univ Kansas Sci Bull 38:1409–1438
    [Google Scholar]
  29. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  30. Ziemke F., Höfle M. G., Lalucat J., Rosello-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63310-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63310-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error