1887

Abstract

Two Gram-negative, rod-shaped, non-spore-forming bacteria (DST GL01 and DST GL02) were isolated from apple fruit juice in the region of the Italian Alps. On the basis of 16S rRNA gene sequence similarities, strains DST GL01 and DST GL02 were shown to belong to the -subclass of the , and, in particular, to the genus , in the branch (98·5–100 %). Chemotaxonomic data (major ubiquinone, Q10; predominant fatty acid, C, accounting for approximately 50 % of the fatty acid content) support the affiliation of both strains to the genus . The results of DNA–DNA hybridizations, together with physiological and biochemical data, allowed genotypic and phenotypic differentiation between strains DST GL01 and DST GL02 and from the 11 validly published species. They therefore represent two new species, for which the names sp. nov. and sp. nov. are proposed, with the type strains DST GL01 (=LMG 22125=DSM 16373) and DST GL02 (=LMG 22126=DSM 16663), respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63301-0
2005-11-01
2019-10-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/6/2365.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63301-0&mimeType=html&fmt=ahah

References

  1. Bernardo, E. B., Neilan, B. A. & Couperwhite, I. ( 1998; ). Characterization, differentiation and identification of wild-type cellulose-synthesizing Acetobacter strains involved in Nata de Coco production. Syst Appl Microbiol 21, 599–608.[CrossRef]
    [Google Scholar]
  2. Boesch, C., Trcek, J., Sievers, M. & Teuber, M. ( 1998; ). Acetobacter intermedius, sp. nov. Syst Appl Microbiol 21, 220–229.[CrossRef]
    [Google Scholar]
  3. Cleenwerck, I., Vandemeulebroecke, K., Janssens, D. & Swings, J. ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov. Int J Syst Evol Microbiol 52, 1551–1558.[CrossRef]
    [Google Scholar]
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Franke, I. H., Fegan, M., Hayward, C., Leonard, G., Stackebrandt, E. & Sly, L. I. ( 1999; ). Description of Gluconacetobacter sacchari sp. nov., a new species of acetic acid bacterium from the leaf sheath of sugar cane and from the pink sugar-cane mealy bug. Int J Syst Bacteriol 49, 1681–1693.[CrossRef]
    [Google Scholar]
  6. Fuentes-Ramirez, L. E., Bustillos-Cristales, R., Tapia-Hernandez, A., Jimenez-Salgado, T., Wang, E. T., Martinez-Romero, E. & Caballero-Mellado, J. ( 2001; ). Novel nitrogen-fixing acetic acid bacteria, Gluconacetobacter johannae sp. nov. and Gluconacetobacter azotocaptans sp. nov., associated with coffee plants. Int J Syst Evol Microbiol 51, 1305–1314.
    [Google Scholar]
  7. Goris, J., Suzuki, K., De Vos, P., Nakase, T. & Kersters, K. ( 1998; ). Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44, 1148–1153.[CrossRef]
    [Google Scholar]
  8. Gosselé, F., Swings, J. & De Ley, J. ( 1980; ). A rapid, simple and simultaneous detection of 2-keto, 5-keto- and 2,5-diketogluconic acids by thin-layer chromatography in culture media of acetic acid bacteria. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt I Orig Reihe C1, 178–181.
    [Google Scholar]
  9. Gosselé, F., Swings, J., Kesters, K., Pauwels, P. & De Ley, J. ( 1983; ). Numerical analysis of phenotypic features and protein gel electropherograms of a wide variety of Acetobacter strains. Proposal for the improvement of the taxonomy of the genus Acetobacter Beijerinck 1898. Syst Appl Microbiol 4, 338–368.[CrossRef]
    [Google Scholar]
  10. Janssens, D., Vereecke, C., Vanhonacker, K. & 7 other editors ( 1998; ). BCCM/LMG Catalogue Bacteria 1998. Belgian Coordinated Collections of Micro-organisms, Belgian Federal Office for Scientific, Technical and Cultural Affairs.
  11. Kamide, K., Matsuda, Y., Iijima, H. & Okajima, K. ( 1990; ). Effect of culture conditions of acetic acid bacteria on cellulose biosynthesis. Br Polym J 22, 167–171.
    [Google Scholar]
  12. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  13. Navarro, R., Uchimura, T. & Komagata, K. ( 1999; ). Taxonomic heterogeneity of strains comprising Gluconacetobacter hansenii. J Gen Appl Microbiol 45, 295–300.[CrossRef]
    [Google Scholar]
  14. Schüller, G., Hertel, C. & Hammes, W. P. ( 2000; ). Gluconacetobacter entanii sp. nov., isolated from submerged high-acid industrial vinegar fermentations. Int J Syst Bacteriol 50, 2013–2020.[CrossRef]
    [Google Scholar]
  15. Sokollek, S. J., Hertel, C. & Hammes, W. P. ( 1998; ). Description of Acetobacter oboediens sp. nov. and Acetobacter pomorum sp. nov., two new species isolated from industrial vinegar fermentations. Int J Syst Bacteriol 48, 935–940.[CrossRef]
    [Google Scholar]
  16. Swings, J. ( 1992; ). The genera Acetobacter and Gluconobacter. In The Prokaryotes, pp. 2268–2286. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  17. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  18. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  19. Toyosaki, H., Kojima, Y., Tsuchida, T., Hoshino, K.-I., Yamada, Y. & Yoshinaga, F. ( 1995; ). The characterization of an acetic acid bacterium useful for producing bacterial cellulose in agitation cultures: the proposal of Acetobacter xylinum subsp. sucrofermentans subsp. nov. J Gen Appl Microbiol 41, 307–314.[CrossRef]
    [Google Scholar]
  20. Urakami, T., Tamaoka, J., Suzuki, K.-I. & Komagata, K. ( 1989; ). Acidomonas gen. nov., incorporating Acetobacter methanolicus as Acidomonas methanolica comb. nov. Int J Syst Bacteriol 39, 50–55.[CrossRef]
    [Google Scholar]
  21. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
  22. Wilson, K. ( 1987; ). Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology, pp. 2.4.1.-2.4.5. Edited by F. M. Ausubel, R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith & K. Struhl. New York: Green Publishing and Wiley-Interscience.
  23. Yamada, Y. ( 2000; ). Transfer of Acetobacter oboediens Sokollek et al. 1998 and Acetobacter intermedius Boesch et al. 1998 to the genus Gluconacetobacter as Gluconacetobacter oboediens comb. nov. and Gluconacetobacter intermedius comb. nov. Int J Syst Evol Microbiol 50, 2225–2227.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63301-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63301-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2365-2370

Supplementary tables showing DNA-DNA binding values between DST GL01 and DST GL02 and the type strains of related species, and additional characteristics that distinguish sp. nov. DST GL01 from sp. nov. DST GL02 are available as an Acrobat PDF file.



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error