1887

Abstract

Comparative analysis of 16S rRNA gene sequences, DNA–DNA hybridization data and phenotypic properties revealed that ‘ subsp. ’ strain K1 is not a member of the genus . Phylogenetically, strain K1 is closely related to unclassified strains of the genus : the 16S rRNA gene sequence of strain K1 is similar to that of sp. AGC-2 (99·6 %), sp. 5C (98·9 %) and sp. CLG (98·6 %) and bacterium GSM (99·1 %). The 16S rRNA gene sequence similarity values for strain K1 and species of the genus with validly published names were in the range 92·1–94·6 %, and for VKM B-1269 the value was 87·7 %. SD-11 was also phylogenetically related to strain K1 (92·6 % sequence similarity) and thus belonged to the genus . Chemotaxonomic data, such as the major cell-membrane lipid components of strains K1 and SD-11 (-alicyclic fatty acids) and the major isoprenoid quinone (menaquinone MK-7) of strain K1, supported the affiliation of strains K1 and SD-11 to the genus . Physiological and molecular biological tests allowed genotypic and phenotypic differentiation of strains K1 and SD-11 from the nine species with validly published names. The G+C content of the DNA of strain K1 was 48·7±0·6 mol%; that of strain SD-11 was 53±1 mol%. DNA–DNA reassociation studies showed low relatedness (22 %) between strains K1 and SD-11, and even lower relatedness (3–5 %) between these strains and subsp. ATCC 27009, DSM 446. DNA reassociation of strains K1 and SD-11 with DSM 4006 gave values of 15 and 21, respectively. Based on the phenotypic and phylogenetic characteristics of strains K1 and SD-11, sp. nov. (type strain, K1=VKM B-2304=DSM 16297) and comb. nov. (type strain, SD-11=ATCC 51911=DSM 12064) are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63300-0
2005-03-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/2/ijs550941.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63300-0&mimeType=html&fmt=ahah

References

  1. Albuquerque L., Rainey F. A., Chung A. P., Sunna A., Nobre M. F., Grote R., Antranikian G., da Costa M. S. 2000; Alicyclobacillus hesperidum sp. nov. and a related genomic species from solfataric soils of Sao Miguel in the Azores. Int J Syst Evol Microbiol 50:451–457 [CrossRef]
    [Google Scholar]
  2. Ashwell G. 1957; Colorimetric analysis of sugars. Anthrone reaction. Methods Enzymol 3:84–85
    [Google Scholar]
  3. Bogdanova T. I., Tsaplina I. A., Sayakin D. D., Karavaiko G. I. 1990; Morphology and cytology of ‘ Sulfobacillus thermosulfidooxidans subsp. thermotolerans ’ bacterium. Mikrobiologiya 60:577–586 (in Russian
    [Google Scholar]
  4. Bridge T. A. M., Johnson D. B. 1998; Reduction of soluble iron and reductive dissolution of ferric iron-containing minerals by moderately thermophilic iron-oxidizing bacteria. Appl Environ Microbiol 64:2181–2186
    [Google Scholar]
  5. Collins M. D. 1985; Analysis of isoprenoid quinones. Methods Microbiol 18:323–363
    [Google Scholar]
  6. Darland G., Brock T. D. 1971; Bacillus acidocaldarius sp. nov., an acidophilic thermophilic spore-forming bacterium. J Gen Bacteriol 67:9–15
    [Google Scholar]
  7. Deinhard G., Blanz P., Poralla K., Altan E. 1987a; Bacillus acidoterrestris sp. nov., a new thermotolerant acidophile isolated from different soils. Syst Appl Microbiol 10:47–53 [CrossRef]
    [Google Scholar]
  8. Deinhard G., Saar J., Krischke W., Poralla K. 1987b; Bacillus cycloheptanicus sp. nov., a new thermoacidophile containing ω -cycloheptane fatty acids. Syst Appl Microbiol 10:68–73 [CrossRef]
    [Google Scholar]
  9. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  10. Dufresne S., Blais J. F., Roy C., Guay R. 1993; Municipal waste water treatment plant sludges: a source of organic carbon-tolerant, sulfur-oxidizing Thiobacillus and Sulfobacillus strains. In Biohydrometallurgical Technologies vol II. Fossil Energy Materials, Bioremediation Microbial Physiology. Proceedings of the International Boihydrometallurgy Symposiump– 267 Edited by Torma A. E., Apel M. L., Brierley C. L. Jackson Hole, WY: The Minerals, Metals, and Materials Society;
    [Google Scholar]
  11. Dufresne S., Bousquet J., Boissinot M., Guay R. 1996; Sulfobacillus disulfidooxidans sp. nov., a new acidophilic, disulfide-oxidizing, gram-positive, spore-forming bacterium. Int J Syst Bacteriol 46:1056–1064 [CrossRef]
    [Google Scholar]
  12. Goto K., Matsubara H., Mochida K., Matsumura T., Hara Y., Niwa M., Yamasato K. 2002; Alicyclobacillus herbarius sp. nov., a novel bacterium containing ω -cycloheptane fatty acids, isolated from herbal tea. Int J Syst Evol Microbiol 52:109–113
    [Google Scholar]
  13. Goto K., Mochida K., Asahara M., Suzuki M., Kasai H., Yokota A. 2003; Alicyclobacillus pomorum sp. nov., a novel thermo-acidophilic, endospore-forming bacterium that does not possess ω -alicyclic fatty acids, and emended description of the genus Alicyclobacillus . Int J Syst Evol Microbiol 53:1537–1544 [CrossRef]
    [Google Scholar]
  14. Johnson D. B., Bacelar-Nicolau P., Okibe N., Yahya A., Hallberg K. B. 2001a; Role of pure and mixed cultures of gram-positive eubacteria in mineral leaching. In Biohydrometallurgy: Fundamentals, Technology and Sustainable Development: Process Metallurgy , part A. Proceedings of the International Boihydrometallurgy Symposium pp  461–470 Edited by Ciminelli V. S. T., Garcia O. Jr Amsterdam: Elsevier;
    [Google Scholar]
  15. Johnson D. B., Body D. A., Bridge T. A. M., Bruhn D. F., Roberto F. F. 2001b; Biodiversity of acidophilic, moderate thermophiles isolated from two sites in Yellowstone National Park, and their roles in the dissimilatory oxido-reduction of iron. In Thermophiles: Biodiversity, Ecology and Evolution pp  23–39 Edited by Reysenbach A. L., Voytek A. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  16. Johnson D. B., Okibe N., Roberto F. F. 2003; Novel thermo-acidophilic bacteria isolated from geothermal sites in Yellowstone National Park: physiological and phylogenetic characteristics. Arch Microbiol 180:60–68 [CrossRef]
    [Google Scholar]
  17. Karavaiko G. I., Tourova T. P., Tsaplina I. A., Bogdanova T. I. 2000; Investigation of the phylogenetic position of aerobic, moderately thermophilic bacteria oxidizing Fe2+, S0 and sulfide minerals and affiliated to the genus Sulfobacillus . Mikrobiologiya 69:962–966 (in Russian
    [Google Scholar]
  18. Karavaiko G. I., Krasil'nikova E. N., Tsaplina I. A., Bogdanova T. I., Zakharchuk L. M. 2001; Growth and carbohydrate metabolism in sulfobacilli. Mikrobiologiya 70:293–299 (in Russian
    [Google Scholar]
  19. Karavaiko G. I., Zakharchuk L. M., Bogdanova T. I., Egorova M. A., Tsaplina I. A., Krasil'nikova E. N. 2002; The enzymes of carbon metabolism in the thermotolerant bacillar strain K1. Mikrobiologiya 71:755–761 (in Russian
    [Google Scholar]
  20. Kondrat'eva T. F., Melamud V. S., Tsaplina I. A., Bogdanova T. I., Senyushkin A. A., Pivovarova T. A., Karavaiko G. I. 1998; Peculiarities in the chromosomal DNA structure in Sulfobacillus thermosulfidooxidans analysed by pulsed-field gel electrophoresis. Mikrobiologiya 67:19–25 (in Russian
    [Google Scholar]
  21. Kovalenko E. V., Malakhova P. T. 1983; The spore-forming iron-oxidizing bacterium Sulfobacillus thermosulfidooxidans . Mikrobiologiya 52:962–966 (in Russian
    [Google Scholar]
  22. Manning H. L. 1975; New medium for isolating iron-oxidizing and heterotrophic acidophilic bacteria from acid mine drainage. Appl Microbiol 30:1010–1015
    [Google Scholar]
  23. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  24. Matsubara H., Goto K., Matsumura T., Mochida K., Iwaki M., Niwa M., Yamasato K. 2002; Alicyclobacillus acidiphilus sp. nov., a novel thermo-acidophilic, ω -alicyclic fatty acid-containing bacterium isolated from acidic beverages. Int J Syst Evol Microbiol 52:1681–1685 [CrossRef]
    [Google Scholar]
  25. Nomoto M., Narahashi Y. 1956; Proteolytic enzymes of Streptomyces griseus . J Biochem 46:653–670
    [Google Scholar]
  26. Oshima M., Ariga T. 1975; ω -Cyclohexyl fatty acids in acidophilic thermophilic bacteria. Studies on their presence, structure, and biosynthesis using precursors labeled with stable isotopes and radioisotopes. J Biol Chem 250:6963–6968
    [Google Scholar]
  27. Owen R. J., Hill L. R., Lapage S. P. 1969; Determination of DNA base composition from melting profiles in dilute buffers. Biopolymers 7:503–516 [CrossRef]
    [Google Scholar]
  28. Reznikov A. A., Mulikovskaya E. P., Sokolov I. Yu. 1970 Metody Analiza Prirodnykh Vod (Methods of Analysis of Natural Waters) pp  140–143 Moscow: Nedra (in Russian;
    [Google Scholar]
  29. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  30. Tsaplina I. A., Bogdanova T. I., Sayakin D. D., Karavaiko G. I. 1991; Effects of organic substances on the growth of Sulfobacillus thermosulfidooxidans and pyrite oxidation. Mikrobiologiya 60:686–692 (in Russian
    [Google Scholar]
  31. Tsaplina I. A., Osipov G. A., Bogdanova T. I., Nedorezova T. P., Karavaiko G. I. 1994; Fatty acid composition of lipids in thermoacidophilic bacteria of the genus Sulfobacillus . Mikrobiologiya 63:821–830 (in Russian
    [Google Scholar]
  32. Tsaplina I. A., Krasil'nikova E. N., Zakharchuk L. M., Egorova M. A., Bogdanova T. I., Karavaiko G. I. 2000; Carbon metabolism in Sulfobacillus thermosulfidooxidans subsp. asporogenes , strain 41. Mikrobiologiya 69:334–340 (in Russian
    [Google Scholar]
  33. Tsuruoka N., Isono Y., Shida O., Hemmi H., Nakayama T., Nishino T. 2003; Alicyclobacillus sendaiensis sp. nov., a novel acidophilic, slightly thermophilic species isolated from soil in Sendai, Japan. Int J Syst Evol Microbiol 53:1081–1084 [CrossRef]
    [Google Scholar]
  34. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  35. Wisotzkey J. D., Jurtshuk P. Jr, Fox G. E., Deinhard G., Poralla K. 1992; Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius , Bacillus acidoterrestris , and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42:263–269 [CrossRef]
    [Google Scholar]
  36. Wood A. P., Kelly D. P. 1983; Autotrophic and mixotrophic growth of three thermoacidophilic iron-oxidizing bacteria. FEMS Microbiol Lett 20:107–112 [CrossRef]
    [Google Scholar]
  37. Zakharchuk L. M., Tsaplina I. A., Krasil'nikova E. N., Bogdanova T. I., Karavaiko G. I. 1994; Carbon metabolism in Sulfobacillus thermosulfidooxidans . Mikrobiologiya 63:573–580 (in Russian
    [Google Scholar]
  38. Zakharchuk L. M., Egorova M. A., Tsaplina I. A., Bogdanova T. I., Krasil'nikova E. N., Melamud V. S., Karavaiko G. I. 2003; Activity of the enzymes of carbon metabolism in Sulfobacillus sibiricus under various conditions of cultivation. Mikrobiologiya 72:621–626 (in Russian)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63300-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63300-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error