1887

Abstract

A novel anaerobic, thermophilic, alkalitolerant bacterium, strain 2204, was isolated from a hot spring of the Baikal Lake region. The cells of strain 2204 were straight rods of variable length, Gram-positive with an S-layer, motile with one to two lateral flagella, and often formed aggregates of 3–15 cells. The isolate was shown to be an obligate anaerobe oxidizing CO and producing equimolar quantities of H and CO according to the equation CO+HO→CO+H. No organic substrates were used as energy sources. For lithotrophic growth on CO, 0·2 g acetate or yeast extract l was required but did not support growth in the absence of CO. Growth was observed in the temperature range 37–68 °C, the optimum being 55 °C. The pH range for growth was 6·7–9·5, the optimum pH being 8·0. The generation time under optimal conditions was 1·3 h. The DNA G+C content was 45 mol%. Penicillin, erythromycin, streptomycin, rifampicin, vancomycin and tetracycline completely inhibited both growth and CO utilization by strain 2204. Thus, isolate 2204 was found to be the first known moderately thermophilic and alkalitolerant H-producing anaerobic carboxydotroph. The novel bacterium fell within the cluster of the family within the low-G+C-content Gram-positive bacteria, where it formed a separate branch. On the basis of morphological, physiological and phylogenetic features, strain 2204 should be assigned to a novel genus and species, for which the name gen. nov., sp. nov. is proposed. The type strain is strain 2204 (=DSM 17129=VKM B-2283=JCM 13258).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63299-0
2005-09-01
2020-01-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/5/ijs552069.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63299-0&mimeType=html&fmt=ahah

References

  1. Fardeau, M. L., Salinas, M. B., L'Haridon, S., Jeanthon, C., Verhé, F., Cayol, J. L., Patel, B. K., Garcia, J. L. & Ollivier, B. ( 2004; ). Isolation from oil reservoirs of novel thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int J Syst Evol Microbiol 54, 467–474.[CrossRef]
    [Google Scholar]
  2. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H. ( 2000; ). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66, 3608–3615.[CrossRef]
    [Google Scholar]
  3. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  4. Kevbrin, V. V. & Zavarzin, G. A. ( 1992; ). The influence of sulfur compounds on the growth of halophilic homoacetic bacterium Acetohalobium arabaticum. Microbiology (English translation of Mikrobiologiia) 61, 812–817.
    [Google Scholar]
  5. Marmur, J. ( 1961; ). A procedure for the isolation of desoxyribonucleic acid from microorganisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  6. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  7. Rainey, F. A., Ward, N. L., Morgan, H. W., Toalster, R. & Stackebrandt, E. ( 1993; ). Phylogenetic analysis of anaerobic thermophilic bacteria: aid for their reclassification. J Bacteriol 175, 4772–4779.
    [Google Scholar]
  8. Schlötelburg, C., von Wintzingerode, F., Hauck, R., Hegemann, W. & Göbel, U. B. ( 2000; ). Bacteria of an anaerobic 1,2-dichloropropane-dechlorinating mixed culture are phylogenetically related to those of other anaerobic dechlorinating consortia. Int J Syst Evol Microbiol 50, 1505–1511.[CrossRef]
    [Google Scholar]
  9. Slobodkin, A. I., Tourova, T. P., Kuznetsov, B. B., Kostrikina, N. A., Chernyh, N. A. & Bonch-Osmolovskaya, E. A. ( 1999; ). Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing, anaerobic, thermophilic bacterium. Int J Syst Bacteriol 49, 1471–1478.[CrossRef]
    [Google Scholar]
  10. Sokolova, T. G., Gonzalez, J. M., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kato, C., Bonch-Osmolovskaya, E. A. & Robb, F. T. ( 2001; ). Carboxydobrachium pacificum gen. nov., sp. nov., a new anaerobic, thermophilic, CO-utilizing marine bacterium from Okinawa Trough. Int J Syst Evol Microbiol 51, 141–149.
    [Google Scholar]
  11. Sokolova, T. G., Kostrikina, N. A., Chernyh, N. A., Tourova, T. P., Kolganova, T. V. & Bonch-Osmolovskaya, E. A. ( 2002; ). Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52, 1961–1967.[CrossRef]
    [Google Scholar]
  12. Sokolova, T. G., Gonzalez, J. M., Kostrikina, N. A., Chernyh, N. A., Slepova, T. V., Bonch-Osmolovskaya, E. A. & Robb, F. T. ( 2004a; ). Thermosinus carboxydivorans gen. nov., sp. nov., a new anaerobic thermophilic, carbon-monoxide-oxidizing, hydrogenogenic bacterium from a hot pool of Yellowstone National Park. Int J Syst Evol Microbiol 54, 2353–2359.[CrossRef]
    [Google Scholar]
  13. Sokolova, T. G., Jeanthon, C., Kostrikina, N. A., Chernyh, N. A., Lebedinsky, A. V., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2004b; ). The first evidence of anaerobic CO oxidation coupled with H2 production by a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Extremophiles 8, 317–323.
    [Google Scholar]
  14. Svetlichny, V. A., Sokolova, T. G., Gerhardt, M., Ringpfeil, M., Kostrikina, N. A. & Zavarzin, G. A. ( 1991; ). Carboxydothermus hydrogenoformans gen. nov., sp. nov., a CO-utilizing thermophilic anaerobic bacterium from hydrothermal environments of Kunashir Island. Syst Appl Microbiol 14, 254–260.[CrossRef]
    [Google Scholar]
  15. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2886.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63299-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63299-0
Loading

Data & Media loading...

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error