1887

Abstract

A halophilic non-spore-forming bacterium of the -, designated strain BH030046, was isolated from a solar saltern in Korea. Cells were Gram-negative, chemoheterotrophic, short rod-shaped and motile with a polar flagellum. Comparative 16S rRNA gene sequence analysis revealed that strain BH030046 formed a distinct lineage in the family and was distinguished from its closest related genera (91·4–94·8 %), (92·1–93·5 %) and (92·1–93·5 %) on the basis of low 16S rRNA gene sequence similarities. Physiological and biochemical data also showed that the isolate was different from members of these three genera. The predominant cellular fatty acids were C and C 7. DNA G+C content was 48 mol% and the major isoprenoid quinone was Q-8. The strain grew optimally at 30–35 °C, pH 7·0–8·0 and 2–5 % NaCl. On the basis of physiological and molecular properties, strain BH030046 (=KCTC 12239=DSM 16280) represents a novel genus and species in the family , for which the name gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63279-0
2005-01-01
2019-12-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550239.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63279-0&mimeType=html&fmt=ahah

References

  1. Bowman, J. P., McCammon, S. A., Brown, J. L. & McMeekin, T. A. ( 1998; ). Glaciecola punicea gen. nov., sp. nov. and Glaciecola pallidula gen. nov., sp. nov.: psychrophilic bacteria from Antarctic sea-ice habitats. Int J Syst Bacteriol 48, 1213–1222.[CrossRef]
    [Google Scholar]
  2. Cole, J. R., Chai, B., Marsh, T. L. & 8 other authors ( 2003; ). The Ribosomal Database Project (RDP-II): previewing a new autoaligner that allows regular updates and the new prokaryotic taxonomy. Nucleic Acids Res 31, 442–443.[CrossRef]
    [Google Scholar]
  3. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 2002; ). phylip (Phylogeny Inference Package), version 3.6a. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  6. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  7. Gauthier, G., Gauthier, M. & Christen, R. ( 1995; ). Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int J Syst Bacteriol 45, 755–761.[CrossRef]
    [Google Scholar]
  8. Ivanova, E. P. & Mikhailov, V. V. ( 2001; ). A new family, Alteromonadaceae fam. nov., including marine proteobacteria of the genera Alteromonas, Pseudoalteromonas, Idiomarina, and Colwellia. Mikrobiologiya 70, 15–23 (in Russian).
    [Google Scholar]
  9. Ivanova, E. P., Sawabe, T., Lysenko, A. M. & 8 other authors ( 2002; ). Pseudoalteromonas ruthenica sp. nov., isolated from marine invertebrates. Int J Syst Evol Microbiol 52, 235–240.
    [Google Scholar]
  10. Jeon, C. O., Park, W., Ghiorse, W. C. & Madsen, E. L. ( 2004; ). Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int J Syst Evol Microbiol 54, 93–97.[CrossRef]
    [Google Scholar]
  11. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  12. Komagata, K. & Suzuki, K. ( 1987; ). Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–208.
    [Google Scholar]
  13. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  14. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  15. Macián, M. C., Ludwig, W., Schleifer, K. H., Garay, E. & Pujalte, M. J. ( 2001; ). Thalassomonas viridans gen. nov., sp. nov., a novel marine gamma-proteobacterium. Int J Syst Evol Microbiol 51, 1283–1289.
    [Google Scholar]
  16. Romanenko, L. A., Zhukova, N. V., Roche, M., Lysenko, A. M., Mikhailov, V. V. & Stackebrandt, E. ( 2003; ). Glaciecola mesophila sp. nov., a novel marine agar-digesting bacterium. Int J Syst Evol Microbiol 53, 647–651.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Smibert, R. M. & Krieg, N. R. ( 1994; ). Phenotypic characterization. In Manual of Methods for General Microbiology, pp. 611–654. Edited by P. Gerhardt, R. G. E. Murray, W. A. Wood & N. R. Krieg. Washington, DC: American Society for Microbiology.
  19. Svetashev, V. I., Vysotskii, M. V., Ivanova, E. P. & Mikhailov, V. V. ( 1995; ). Cellular fatty acids of Alteromonas species. Syst Appl Microbiol 18, 37–43.[CrossRef]
    [Google Scholar]
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  22. Van Trappen, S., Tan, T.-L., Yang, J., Mergaert, J. & Swings, J. ( 2004; ). Alteromonas stellipolaris sp. nov., a novel, budding, prosthecate bacterium from Antarctic seas, and emended description of the genus Alteromonas. Int J Syst Evol Microbiol 54, 1157–1163.[CrossRef]
    [Google Scholar]
  23. Yi, H., Bae, K. S. & Chun, J. ( 2004; ). Aestuariibacter salexigens gen. nov., sp. nov. and Aestuariibacter halophilus sp. nov., isolated from tidal flat sediment, and emended description of Alteromonas macleodii. Int J Syst Evol Microbiol 54, 571–576.[CrossRef]
    [Google Scholar]
  24. Yoon, J. H., Kim, I. G., Kang, K. H., Oh, T. K. & Park, Y. H. ( 2003; ). Alteromonas marina sp. nov., isolated from sea water of the East Sea in Korea. Int J Syst Evol Microbiol 53, 1625–1630.[CrossRef]
    [Google Scholar]
  25. Yoon, J.-H., Yeo, S.-H., Oh, T.-K. & Park, Y.-H. ( 2004; ). Alteromonas litorea sp. nov., a slightly halophilic bacterium isolated from an intertidal sediment of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1197–1201.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63279-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63279-0
Loading

Data & Media loading...

Supplements

Transmission electron micrograph showing general morphology of a negatively stained cell of strain BH030046 from an exponentially growing culture. Bar, 500 nm.

IMAGE

Maximum-likelihood tree showing the phylogenetic relationships of strain BH030046 and other related taxa. ATCC 43504 (GenBank accession no. U01330) was used as an outgroup. The scale bar is equal to 0.1 changes per nucleotide position. [PDF](15 KB)

PDF

Fatty acid compositions of strain BH030046 , DSM 6062 , KCCM 41638 and KCCM 41775 on marine agar. [PDF](18 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error