Phylogenetic and morphological evaluation of the genera , , and (Nostocales, Cyanobacteria) Free

Abstract

The heterocytous cyanobacteria form a monophyletic group according to 16S rRNA gene sequence data. Within this group, phylogenetic and morphological studies have shown that genera such as and are intermixed. Moreover, the phylogeny of the genus , which was recently separated from , has not been investigated. The aim was to study the taxonomy of the genera , , and belonging to the family Nostocaceae (subsection IV.I) by morphological and phylogenetic analyses of 16S rRNA gene, and sequences. New strains were isolated to avoid identification problems caused by morphological changes of strains during cultivation. Morphological and phylogenetic data showed that benthic and planktic strains were intermixed. In addition, the present study confirmed that and strains were not monophyletic, as previously demonstrated. The evolutionary distances between the strains indicated that the planktic and strains as well as five benthic strains in cluster 1 could be assigned to a single genus. On the basis of the 16S rRNA, and gene sequences, the / strains (cluster 1) were divided into nine supported subclusters which could also be separated morphologically, and which therefore might represent different species. strains were morphologically and phylogenetically heterogeneous and did not form a monophyletic cluster. These strains, which were representatives of three distinct species, might actually belong to three genera according to the evolutionary distances. strains were also heterogeneous and seemed to form a monophyletic cluster, which may contain more than one genus. It was found that certain morphological features were stable and could be used to separate different phylogenetic clusters. For example, the width and the length of akinetes were useful features for classification of the / strains in cluster 1. This morphological and phylogenetic study with fresh isolates showed that the current classification of these anabaenoid genera needs to be revised.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63276-0
2005-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550011.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63276-0&mimeType=html&fmt=ahah

References

  1. Desikachary T. V. 1959 Cyanophyta part I and II New Delhi: Indian Council of Agricultural Research;
    [Google Scholar]
  2. Edwards U., Rogall T., Blöcker H., Emde M., Böttger E. C. 1989; Isolation and direct complete nucleotide determination of entire genes. Characterization of a gene coding for 16S ribosomal RNA. Nucleic Acids Res 17:7843–7853 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1993 phylip (Phylogeny Inference Package) version 3.6c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  4. Geitler L. 1932; Cyanophyceae. In Kryptogamenflora von Deutschland, Oesterreich und der Schweiz vol. XIV Edited by Rabenhorst L. Leipzig: Akademische Verlagsgesellschaft (in German;
    [Google Scholar]
  5. Gkelis S., Rajaniemi P., Vardaka E., Moustaka-Gouni M., Lanaras T., Sivonen K. 2005; Limnothrix redekei (Van Goor) Meffert (Cyanobacteria) strains from Lake Kastoria, Greece form a separate phylogenetic group. . Microb Ecol (in press)
    [Google Scholar]
  6. Gugger M. F., Hoffmann L. 2004; Polyphyly of the true branching cyanobacteria (Stigonematales. Int J Syst Evol Microbiol 54:349–357 [CrossRef]
    [Google Scholar]
  7. Gugger M., Lyra C., Suominen I., Tsitko I., Humbert J. F., Salkinoja-Salonen M. S., Sivonen K. 2002a; Cellular fatty acids as chemotaxonomic markers of the genera Anabaena ,Aphanizomenon , Microcystis , Nostoc and Planktothrix (cyanobacteria). Int J Syst Evol Microbiol 52:1007–1015 [CrossRef]
    [Google Scholar]
  8. Gugger M., Lyra C., Henriksen P., Couté A., Humbert J.-F., Sivonen K. 2002b; Phylogenetic comparison of the cyanobacterial genera Anabaena and Aphanizomenon . Int J Syst Evol Microbiol 52:1867–1880 [CrossRef]
    [Google Scholar]
  9. Henson B. J., Watson L. E., Barnum S. R. 2002; Molecular differentiation of the heterocystous cyanobacteria, Nostoc and Anabaena , based on complete nifD sequences. Curr Microbiol 45:161–164 [CrossRef]
    [Google Scholar]
  10. Henson B. J., Hesselbrock S. M., Watson L. E., Barnum S. R. 2004; Molecular phylogeny of the heterocystous cyanobacteria (subsections IV and V) based on nifD . Int J Syst Evol Microbiol 54:493–497 [CrossRef]
    [Google Scholar]
  11. Hönerlager W., Hahn D., Zeyer J. 1995; Detection of mRNA of nrpM in Bacillus megaterium ATCC 14581 grown in soil by whole-cell hybridisation. Arch Microbiol 163:235–241 [CrossRef]
    [Google Scholar]
  12. Hrouzek P., Šimek M., Komárek J. 2003; Nitrogenase activity (acetylene reduction activity) and diversity of six soil Nostoc strains. Arch Hydrobiol Suppl 146:87–101
    [Google Scholar]
  13. Iteman I., Rippka R., Tandeau de Marsac N., Herdman M. 2002; rDNA analyses of planktonic heterocystous cyanobacteria, including members of the genera Anabaenopsis and Cyanospira . Microbiology 148:481–496
    [Google Scholar]
  14. Kishino H., Hasegawa M. 1989; Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data and the branching order in Hominoidea. J Mol Evol 29:170–179 [CrossRef]
    [Google Scholar]
  15. Komárek J., Anagnostidis K. 1989; Modern approach to the classification system of Cyanophytes 4 - Nostocales. Arch Hydrobiol Suppl 82:247–345
    [Google Scholar]
  16. Komárek J., Kováčik L. 1989; Trichome structure of four Aphanizomenon taxa (Cyanophyceae) from Czechoslovakia, with notes on the taxonomy and delimitation of the genus. Plant Syst Evol 164:47–64 [CrossRef]
    [Google Scholar]
  17. Kotai J. 1972; Instructions for preparation of modified nutrient solution Z8 for algae . Norwegian Institute for Water Research publication B-11/69: pp  1–5 Oslo: NIWR;
    [Google Scholar]
  18. Lachance M. 1981; Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. Int J Syst Bacteriol 31:139–147 [CrossRef]
    [Google Scholar]
  19. Lehtimäki J., Lyra C., Suomalainen S., Sundman P., Rouhiainen L., Paulin L., Salkinoja-Salonen M., Sivonen K. 2000; Characterization of Nodularia strains, cyanobacteria from brackish waters, by genotypic and phenotypic methods. Int J Syst Evol Microbiol 50:1043–1053 [CrossRef]
    [Google Scholar]
  20. Lepère C., Wilmotte A., Meyer B. 2000; Molecular diversity of Microcystis strains (Cyanophyceae, Chroococcales) based on 16S rRNA sequences. Syst Geogr Plant 70:275–283 [CrossRef]
    [Google Scholar]
  21. Li R., Carmichael W. W., Pereira P. 2003; Morphological and 16S rRNA gene evidence for reclassification of the paralytic shellfish toxin producing Aphanizomenon flos-aquae LMECYA 31 as Aphanizomenon issatschenkoi (Cyanophyceae. J Phycol 39:814–818 [CrossRef]
    [Google Scholar]
  22. Ludwig W., Strunk O., Klugbauer S., Weizenegger M., Neumaier J., Bachleither M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  23. Lyra C., Suomalainen S., Gugger M., Vezie C., Sundman P., Paulin L., Sivonen K. 2001; Molecular characterization of planktic cyanobacteria of Anabaena, Aphanizomenon, Microcystis and Planktothrix genera. Int J Syst Evol Microbiol 51:513–526
    [Google Scholar]
  24. Meeks J. C., Joseph C. M., Haselkorn R. 1988; Organization of the nif genes in cyanobacteria in symbiotic association with Azolla and Anthoceros . Arch Microbiol 150:61–71 [CrossRef]
    [Google Scholar]
  25. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  26. Prager E. M., Wilson A. C. 1988; Ancient origin of lactalbumin from lysozyme: analysis of DNA and amino acid sequences. J Mol Evol 27:326–335 [CrossRef]
    [Google Scholar]
  27. Rantala A., Fewer D. P., Hisbergues M., Rouhiainen L., Vaitomaa J., Börner T., Sivonen K. 2004; Phylogenetic evidence for the early evolution of microcystin synthesis. Proc Natl Acad Sci U S A 101:568–573 [CrossRef]
    [Google Scholar]
  28. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61 [CrossRef]
    [Google Scholar]
  29. Rippka R., Castenholz R. W., Herdman M. 2001a; Subsection IV. (Formerly Nostocales Castenholz 1989b sensu Rippka, Deruelles, Waterbury, Herdman and Stanier 1979. In Bergey's Manual of Systematic Bacteriology , 2nd edn.vol 1 pp  562–566 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  30. Rippka R., Castenholz R. W., Iteman I., Herdman M. 2001b; Form-genus I. Anabaena . In Bergey's Manual of Systematic Bacteriology , 2nd edn.vol 1 pp  566–568 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  31. Rippka R., Castenholz R. W., Iteman I., Herdman M. 2001c; Form-genus III. Aphanizomenon Morren 1838. In Bergey's Manual of Systematic Bacteriology , 2nd edn.vol 1 pp  569–570 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  32. Rudi K., Skulberg O. M., Jakobsen K. S. 1998; Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J Bacteriol 180:3453–3461
    [Google Scholar]
  33. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  34. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in Bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  35. Stanier R. Y., Kunisawa R., Mandel M., Cohen-Bazire G. 1971; Purification and properties of unicellular blue-green algae (order Chroococcales. Bacteriol Rev 35:171–205
    [Google Scholar]
  36. Stulp B. K., Stam W. T. 1982; General morphology and akinete germination of a number of Anabaena strains (Cyanophyceae) in culture. Arch Hydrobiol Suppl 63:35–52
    [Google Scholar]
  37. Stulp B. K., Stam W. T. 1984a; Growth and morphology of Anabaena strains (Cyanophyceae, Cyanobacteria) in cultures under different salinities. Br Phycol J 19:281–286 [CrossRef]
    [Google Scholar]
  38. Stulp B. K., Stam W. T. 1984b; Genotypic relationships between strains of Anabaena (Cyanophyceae) and their correlation with morphological affinities. Br Phycol J 19:287–301 [CrossRef]
    [Google Scholar]
  39. Stulp B. K., Stam W. T. 1985; Taxonomy of the genus Anabaena (Cyanophyceae) based on morphological and genotypic criteria. Arch Hydrobiol Suppl 71:257–268
    [Google Scholar]
  40. Swofford D. L. 2003; paup*. Phylogenetic Analysis Using Parsimony (*and other methods. Version 4b10: Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  41. Tamas I., Svircev Z., Andersson S. G. 2000; Determinative value of a portion of the nifH sequence for the genera Nostoc and Anabaena (cyanobacteria. Curr Microbiol 41:197–200
    [Google Scholar]
  42. Templeton A. R. 1983; Phylogenetic interface from restriction endonuclease cleavage site maps with particular reference to the evolution of humans and the apes. Evolution 37:221–224 [CrossRef]
    [Google Scholar]
  43. ter Braak C. J. F., Šmilauer P. 1998 CANOCO Release 4. Reference manual and user's guide to Canoco for Windows: Software for Canonical Community Ordination Ithaca, NY: Microcomputer Power;
    [Google Scholar]
  44. Turner S. 1997; Molecular systematics of oxygenic photosynthetic bacteria. Plant Syst Evol (Suppl.) 11:13–52
    [Google Scholar]
  45. Turner S., Pryer K. M., Miao V. P. W., Palmer J. D. 1999; Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. J Eukaryot Microbiol 46:327–338 [CrossRef]
    [Google Scholar]
  46. Wilmotte A. 1994; Molecular evolution and taxonomy of the cyanobacteria. In The Molecular Biology of Cyanobacteria pp  1–25 Edited by Bryant D. A. Dordrecht: Kluwer Academic;
    [Google Scholar]
  47. Wilmotte A., Herdman M. 2001; Phylogenetic relationships among the cyanobacteria based on 16S rRNA sequences. In Bergey's Manual of Systematic Bacteriology , 2nd edn.vol 1 pp  487–493 Edited by Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  48. Zapomělová E. 2004; Morfologická variabilita a růst vybraných kmenů sinic rodu Anabaena a Aphanizomenon v závislosti na podmínkách prostředí [ Morphological variability and growth of chosen cyanobacterial strains of genera Anabaena and Aphanizomenon in the dependence on environmental conditions ]. MSc thesis University of South Bohemia; Czech Republic (in Czech
  49. Zehnder in Staub R. 1961; Ernährungphysiologish-autökologische Untersuchung an der planktonischen Blaualge Oscillatoria rubescens DC. Schweiz Z Hydrol 23:82–198 (in German)
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63276-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63276-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed