Expansion of the yeast clade: 16 novel species from basidiocarp-feeding beetles Free

Abstract

A major clade of new yeast taxa from the digestive tract of basidiocarp-feeding beetles is recognized based on rRNA gene sequence analyses. Almost 30 % of 650 gut isolates formed a statistically well-supported clade that included . The yeasts in the clade were isolated from 11 families of beetles, of which Tenebrionidae and Erotylidae were most commonly sampled. Repeated isolation of certain yeasts from the same beetle species at different times and places indicated strong host associations. Sexual reproduction was never observed in the yeasts. Based on comparisons of small- and large-subunit rRNA gene sequences and morphological and physiological traits, the yeasts were placed in and in 16 other undescribed taxa. In this report, the novel species in the genus are described and their relationships with other taxa in the Saccharomycetes are discussed. The novel species and their type strains are as follows: (NRRL Y-27568=CBS 9823), (NRRL Y-27571=CBS 9824), (NRRL Y-27580=CBS 9825), (NRRL Y-27573=CBS 9826), (NRRL Y-27606=CBS 9827), (NRRL Y-27574=CBS 9828), (NRRL Y-27569=CBS 9829), (NRRL Y-27566=CBS 9830), (NRRL Y-27584=CBS 9831), (NRRL Y-27587=CBS 9832), (NRRL Y-27570=CBS 9833), (NRRL Y-27567=CBS 9834), (NRRL Y-27572=CBS 9835), (NRRL Y-27588=CBS 9836), (NRRL Y-27563=CBS 9837) and (NRRL Y-27589=CBS 9838).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63246-0
2004-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542409.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63246-0&mimeType=html&fmt=ahah

References

  1. Barnett J. A., Payne R. W., Yarrow D. 2000 Yeasts: Characteristics and Identification , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  2. Hausner G., Reid J., Klassen G. R. 1993; On the subdivision of Ceratocystis s.l., based on partial ribosomal DNA sequences. Can J Bot 71:52–63 [CrossRef]
    [Google Scholar]
  3. Jones K. G., Blackwell M. 1996; Ribosomal DNA sequence analysis places the yeast-like genus Symbiotaphrina within filamentous ascomycetes. Mycologia 88:212–218 [CrossRef]
    [Google Scholar]
  4. Jones K. G., Dowd P. F., Blackwell M. 1999; Polyphyletic origins of yeast-like endocytobionts from anobiid and cerambycid beetles. Mycol Res 103:542–546 [CrossRef]
    [Google Scholar]
  5. Jurzitza G. 1979; The fungi symbiotic with anobiid beetles. In Insect–Fungus Symbiosis: Nutrition, Mutualism, and Commensalism pp  65–76 Edited by Batra L. R. New York: Wiley;
    [Google Scholar]
  6. Kurtzman C. P. 2000; Four new yeasts in the Pichia anomala clade. Int J Syst Evol Microbiol 50:395–404 [CrossRef]
    [Google Scholar]
  7. Kurtzman C. P. 2001; Six new anamorphic ascomycetous yeasts near Candida tanzawaensis . FEMS Yeast Res 1:177–185
    [Google Scholar]
  8. Kurtzman C. P., Phaff H. J. 1987; Molecular taxonomy. In The Yeasts, vol. 1, Biology of Yeasts pp  63–94 Edited by Rose A. H., Harrison J. S. London: Academic Press;
    [Google Scholar]
  9. Kurtzman C. P., Robnett C. J. 1995; Molecular relationships among hyphal ascomycetous yeasts and yeastlike taxa. Can J Bot 73:S824–S830 [CrossRef]
    [Google Scholar]
  10. Kurtzman C. P., Robnett C. J. 1997; Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large subunit (26S) ribosomal DNA gene. J Clin Microbiol 35:1216–1223
    [Google Scholar]
  11. Kurtzman C. P., Robnett C. J. 1998; Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek 73:331–371 [CrossRef]
    [Google Scholar]
  12. Lee S. B., Taylor J. W. 1990; Isolation of DNA from fungal mycelia and single spores. In PCR Protocols – a Guide to Methods and Applications pp  282–287 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego, CA: Academic Press;
    [Google Scholar]
  13. Nakase T., Itoh M., Takematsu A., Komagata K. 1988; Candida tanzawaensis , a new species of yeast isolated from moss collected in Japan. Trans Mycol Soc Jpn 29:331–338
    [Google Scholar]
  14. Nardon P., Grenier A. M. 1989; Endosymbiosis in Coleoptera: biological, biochemical, and genetic aspects. In Insect Endocytobiosis: Morphology, Physiology, Genetics, Evolution pp  175–216 Edited by Schwemmler W., Gassner G. Boca Raton, FL: CRC Press;
    [Google Scholar]
  15. Noda H., Kodama K. 1996; Phylogenetic position of yeastlike endosymbionts of anobiid beetles. Appl Environ Microbiol 62:162–167
    [Google Scholar]
  16. Noda H., Omura T. 1992; Purification of yeast-like symbiotes of planthoppers. J Invertebr Pathol 59:104–105 [CrossRef]
    [Google Scholar]
  17. Noda H., Nakashima N., Koizumi M. 1995; Phylogenetic position of yeast-like symbiotes of rice planthoppers based on partial 18S rDNA sequences. Insect Biochem Mol Biol 25:639–646 [CrossRef]
    [Google Scholar]
  18. Price C. W., Fuson G. B., Phaff H. J. 1978; Genome comparison in yeast systematics: delimination of species within the genera Schwanniomyces , Saccharomyces , Debaryomyces and Pichia . Microbiol Rev 42:161–193
    [Google Scholar]
  19. Suh S.-O., Blackwell M. 2004; The beetle gut as a habitat for new species of yeasts. In Insect Fungal Associations: Ecology and Evolution (in press). Edited by Vega F. E., Blackwell M. New York: Oxford University Press;
    [Google Scholar]
  20. Suh S.-O., Noda H., Blackwell M. 2001; Insect symbiosis: derivation of yeast-like endosymbionts within an entomopathogenic filamentous lineage. Mol Biol Evol 18:995–1000 [CrossRef]
    [Google Scholar]
  21. Suh S.-O., Marshall C. J., McHugh J. V., Blackwell M. 2003; Wood ingestion by passalid beetles in the presence of xylose-fermenting gut yeasts. Mol Ecol 12:3137–3145 [CrossRef]
    [Google Scholar]
  22. Suh S.-O., McHugh J. V., Blackwell M. 2004; Metschnikowia chrysoperlae sp. nov., Candida picachoensis sp. nov. and Candida pimensis sp. nov., isolated from the green lacewings Chrysoperla comanche and Chrysoperla carnea (Neuroptera: Chrysopidae). Int J Syst Evol Microbiol 54:1883–1890 [CrossRef]
    [Google Scholar]
  23. Swofford D. L. 2002 PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods) , version 4.0b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  24. Tatusova T. A., Madden T. L. 1999; blast 2 Sequences, a new tool for comparing protein and nucleotide sequences. FEMS Microbiol Lett 174:247–250 [CrossRef]
    [Google Scholar]
  25. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  26. White T. J., Bruns T., Lee S., Taylor J. 1990; Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols – a Guide to Methods and Applications pp  315–322 Edited by Innis M. A., Gelfand D. H., Sninsky J. J., White T. J. San Diego, CA: Academic Press;
    [Google Scholar]
  27. Yarrow D. 1998; Methods for the isolation, maintenance and identification of yeasts. In The Yeasts, a Taxonomic Study , 4th edn. pp  77–100 Edited by Kurtzman C. P, Fell J. W. Amsterdam: Elsevier;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63246-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63246-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed