1887

Abstract

A piezotolerant, mesophilic, marine lactic acid bacterium (strain LT20) was isolated from a deep sub-seafloor sediment core collected at Nankai Trough, off the coast of Japan. Cells were Gram-positive, rod-shaped, non-sporulating and non-motile. The NaCl concentration range for growth was 0–120 g l, with the optimum at 10–20 g l. The temperature range for growth at pH 7·0 was 4–50 °C, with the optimum at 37–40 °C. The optimum pH for growth was 7·0–8·0. The optimum pressure for growth was 0·1 MPa with tolerance up to 30 MPa. The main cellular phospholipids were phosphatidylglycerols (25 %), diphosphatidylglycerols (34 %) and a group of compounds tentatively identified as ammonium-containing phosphatidylserines (32 %); phosphatidylethanolamines (9 %) were minor components. The fatty acid composition was dominated by side chains of 16 : 0, 14 : 0 and 16 : 1. The G+C content of the genomic DNA was 42 mol%. On the basis of 16S rRNA gene sequence analysis and the secondary structure of the V6 region, this organism was found to belong to the genus and was closely related to M13-2 (99 %), sp. strain MJYP.25.24 (99 %) and strain ww2-SN4C (97 %). Despite the high similarity between their 16S rRNA gene sequences (99 %), the DNA–DNA hybridization levels were less than 20 %. On the basis of physiological and genetic characteristics, it is proposed that this organism be classified as a novel species, sp. nov. The type strain is LT20 (=DSM 16108=JCM 12337).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63236-0
2005-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550345.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63236-0&mimeType=html&fmt=ahah

References

  1. Bale S. J., Goodman K., Rochelle P. A., Marchesi J. R., Fry J. C., Weightman A. J., Parkes R. J. 1997; Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacteria from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47:515–521 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. Cragg B. A., Bale S. J., Parkes R. J. 1992a; A novel method for the transport and long term storage of cultures and samples in an anaerobic atmosphere. Lett Appl Microbiol 15:125–128 [CrossRef]
    [Google Scholar]
  4. Cragg B. A., Harvey F. M., Fry J. C., Herbert R. A., Parkes R. J. 1992b; Bacterial biomass and activity in deep sediment layers of the Japan Sea, Hole 798B. Proceedings of Ocean Drilling Program, Scientific Results, Leg 128 pp  761–776 College Station, TX: Texas A&M University;
    [Google Scholar]
  5. Erauso G., Charbonnier F., Barbeyron T., Forterre P., Prieur D. 1992; Preliminary characterization of a hyperthermophilic archaebacterium with a plasmid, isolated from a North Fiji Basin hydrothermal vent. C R Acad Sci 314:387–393
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum-likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  8. Franzmann P. D., Höpfl P., Weiss N., Tindall B. J. 1991; Psychrotrophic, lactic acid-producing bacteria from anoxic waters in Ace Lake, Antarctica; Carnobacterium funditum sp.nov. and Carnobacterium alterfunditum sp. nov. Arch Microbiol 156:255–262 [CrossRef]
    [Google Scholar]
  9. Inagaki F., Suzuki M., Takai K., Oida H., Sakamoto T., Aoki K., Nealson K. H., Horikoshi K. 2003; Microbial communities associated with geological horizons in coastal subseafloor sediments from the Sea of Okhotsk. Appl Environ Microbiol 69:7224–7235 [CrossRef]
    [Google Scholar]
  10. Ishikawa M., Nakajima K., Yanagi M., Yamamoto Y., Yamasato K. 2003; Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53:711–720 [CrossRef]
    [Google Scholar]
  11. Janssen P. H., Evers S., Rainey F. A., Weiss N., Ludwig W., Harfoot C. G., Schink B. 1995; Lactosphaera gen. nov., a new genus of lactic acid bacteria, and transfer of Ruminococcus pasteurii Schink 1984 to Lactosphaera pasteurii comb. nov. Int J Syst Bacteriol 45:565–571 [CrossRef]
    [Google Scholar]
  12. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  13. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  14. Kato C., Sato T., Horikoshi K. 1995; Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples. Biodivers Conserv 4:1–9 [CrossRef]
    [Google Scholar]
  15. Koroleff F. 1969; Direct determination of ammonia in natural waters as indophenol blue. In Information on Techniques and Methods for Seawater Analysis pp  19–22 Charlottenlund: International Council for the Exploration of the Sea;
    [Google Scholar]
  16. Lake J. A. 1987; A rate-independent technique for analysis of nucleic acid sequences: evolutionary parsimony. Mol Biol Evol 4:167–191
    [Google Scholar]
  17. Ludwig W., Strunk O., Westram R. 29 other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef]
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  19. Marteinsson V. T., Watrin L., Prieur D., Caprais J.-C., Raguénès G., Erauso G. 1995; Phenotypic characterization, DNA similarities, and protein profiles of twenty sulfur-metabolizing hyperthermophilic anaerobic archaea isolated from hydrothermal vents in the Southwestern Pacific Ocean. Int J Syst Bacteriol 45:623–632 [CrossRef]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurements of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  21. Mikucki J. A., Liu Y., Delwiche M., Colwell F. S., Boone D. R. 2003; Isolation of a methanogen from deep marine sediments that contain methane hydrates, and description of Methanoculleus submarinus sp. nov. Appl Environ Microbiol 69:3311–3316 [CrossRef]
    [Google Scholar]
  22. Moore G. F., Taira A., Klaus A. 23 other authors 2001; Deformation and fluid flow processes in the Nankai Trough accretionary prism sites 1173–1178. In Proceedings of Ocean Drilling Program, Initial Reports vol 190: College Station, TX: Texas A&M University;
    [Google Scholar]
  23. Newberry C. J., Webster G., Cragg B. A., Parkes R. J., Weightman A. J., Fry J. C. 2004; Diversity of prokaryotes and methanogenesis in deep subsurface sediments from the Nankai Trough, Ocean Drilling Program Leg 190. Environ Microbiol 6:274–287 [CrossRef]
    [Google Scholar]
  24. Ntougias S., Russell N. J. 2001; Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash-waters. Int J Syst Evol Microbiol 511161–1170 [CrossRef]
  25. Parkes R. J., Cragg B. A., Bale S. J., Goodman K., Fry J. C. 1995; A combined ecological and physiological approach to studying sulphate reduction within deep marine sediment layers. J Microbiol Methods 23:235–249 [CrossRef]
    [Google Scholar]
  26. Parkes R. J., Cragg B. A., Wellsbury P. 2000; Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 8:11–28 [CrossRef]
    [Google Scholar]
  27. Radke M., Sittardt H. G., Welte D. H. 1978; Removal of soluble organic matter from rock samples with a flow-through extraction cell. Anal Chem 50:663–665 [CrossRef]
    [Google Scholar]
  28. Rhee S. K., Pack M. Y. 1980; Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus . J Bacteriol 144:217–221
    [Google Scholar]
  29. Saitou M., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  30. Slobodkin A. I., Tourova T. P., Kuznetsov B. B., Kostrikina N. A., Chernyh N. A., Bonch-Osmolovskaya E. A. 1999; Thermoanaerobacter siderophilus sp. nov., a novel dissimilatory Fe(III)-reducing anaerobic thermophilic bacterium. Int J Syst Bacteriol 49:1471–1478 [CrossRef]
    [Google Scholar]
  31. Solorzano L. 1969; Determination of ammonia in natural waters by the phenol-hypochlorite method. Limnol Oceanogr 14:799–801 [CrossRef]
    [Google Scholar]
  32. Spielmeyer W. K., McMeekin T. A., Miller J. M., Franzmann P. D. 1993; Phylogeny of the Antarctic bacterium, Carnobacterium alterfundicum . Polar Biol 13:501–503
    [Google Scholar]
  33. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  34. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  35. Toffin L., Webster G., Weightman A. J., Fry J. C., Prieur D. 2004a; Molecular monitoring of culturable bacteria from deep-sea sediment of the Nankai Trough, Leg 190 Ocean Drilling Program. FEMS Microbiol Ecol 48:357–367 [CrossRef]
    [Google Scholar]
  36. Toffin L., Bidault A., Pignet P., Tindall B. J., Slobodkin A., Kato C., Prieur D. 2004b; Shewanella profunda sp. nov., isolated from deep marine sediment of the Nankai Trough. Int J Syst Evol Microbiol 54:1943–1949 [CrossRef]
    [Google Scholar]
  37. Wery N., Moricet J. M., Cueff V., Jean J., Pignet P., Lesongeur F., Cambon-Bonavita M. A., Barbier G. 2001; Caloranaerobacter azorensis gen. nov., sp. nov., an anaerobic thermophilic bacterium, isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:1789–1796 [CrossRef]
    [Google Scholar]
  38. White D. C., Davies W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  39. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. pp  3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  40. Zink K.-G., Wilkes H., Disko U., Elvert M., Horsfield B. 2003; Intact phospholipids – microbial “life markers” in marine deep subsurface sediments. Org Geochem 34:755–769 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63236-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63236-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error