1887

Abstract

Two moderately thermophilic, Gram-positive, spore-forming bacteria were isolated from different geographical locations and sources; strain GS5-97 from a beet sugar factory in Leopoldsdorf, Lower Austria, and strain YNP10 from a geothermally heated soil, Yellowstone National Park, USA. The sequences of their 16S rRNA genes were found to be 99·8 % identical, and DNA–DNA hybridization experiments revealed that strains GS5-97 and YNP10 share 89·9 mol% similarity to each other, but only 34·3 and 39·2 mol% similarity, respectively, to DSM 12041, which is their closest related type strain. A polyphasic analysis showed that these two isolates were more similar to each other than to other characterized geobacilli. Their DNA G+C content was 43·2 and 42·4 mol%, respectively, and they were identical with respect to many phenotypic features (e.g. T 55 °C; pH 7·0). Both strains clearly displayed best growth when cultured aerobically. They differed slightly in their cellular fatty acid profiles and polar lipid pattern, and genotypically they could also be distinguished based on randomly amplified polymorphic DNA fingerprints and internal transcribed spacer analysis. Freeze-etching experiments revealed oblique surface layer (S-layer) lattices in both strains, and biochemical analyses of the purified S-layer proteins indicated the occurrence of glycosylation. Based on the properties of these organisms relative to those currently documented for the genus and for the various sister genera in the radiation, a novel species is proposed, sp. nov., with GS5-97 (=ATCC BAA-942=DSM 16325) as the type strain. Strain YNP10 has been deposited in the American Type Culture Collection as ATCC BAA-943.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63227-0
2004-11-01
2024-11-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542361.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63227-0&mimeType=html&fmt=ahah

References

  1. Ahmad S., Scopes R. K., Rees G. N., Patel B. K. C. 2000; Saccharococcus caldoxylosilyticus sp. nov., an obligately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 50:517–523 [CrossRef]
    [Google Scholar]
  2. Altman E., Schäffer C., Brisson J.-R., Messner P. 1995; Characterization of the glycan structure of a major glycopeptide from the surface layer glycoprotein of Clostridium thermosaccharolyticum E207-71. Eur J Biochem 229:308–315 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Amann R. I., Ludwig W., Schleifer K.-H. 1995; Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59:143–169
    [Google Scholar]
  5. Belduz A. O., Dulger S., Demirbag Z. 2003; Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53:1315–1320 [CrossRef]
    [Google Scholar]
  6. Bligh E. G., Dyer W. J. 1959; A rapid method for total lipid extraction and purification. Can J Med Sci 37:911–917
    [Google Scholar]
  7. Bock K., Schuster-Kolbe J., Altman E., Allmaier G., Stahl B., Christian R., Sleytr U. B., Messner P. 1994; Primary structure of the O -glycosidically linked glycan chain of the crystalline surface layer glycoprotein of Thermoanaerobacter thermohydrosulfuricus L111-69. Galactosyl tyrosine as a novel linkage unit. J Biol Chem 269:7137–7144
    [Google Scholar]
  8. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  9. De Clerck E., Rodríguez-Díaz M., Vanhoutte T., Heyrman J., Logan N. A., De Vos P. 2004; Anoxybacillus contaminans sp. nov. and Bacillus gelatini sp. nov., isolated from contaminated gelatin batches. Int J Syst Evol Microbiol 54:941–946 [CrossRef]
    [Google Scholar]
  10. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  11. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  12. Ferris M. J., Muyzer G., Ward D. M. 1996; Denaturing gradient gel electrophoresis profiles of 16S rRNA-defined populations inhabiting a hot spring microbial mat community. Appl Environ Microbiol 62:340–346
    [Google Scholar]
  13. Fortina M. G., Mora D., Schumann P., Parini C., Manachini P. L., Stackebrandt E. 2001; Reclassification of Saccharococcus caldoxylosilyticus as Geobacillus caldoxylosilyticus (Ahmad et al . 2000). comb. nov. Int J Syst Evol Microbiol 51:2063–2071 [CrossRef]
    [Google Scholar]
  14. Gordon R. E., Haynes W. C., Pang C. H. 1973; The genus Bacillus . In US Department of Agriculture Handbook 427 pp  224–227 Washington, DC: US Department of Agriculture;
    [Google Scholar]
  15. Hollaus F., Klaushofer H. 1973; Identification of hyperthermophilic obligate anaerobic bacteria from extraction juices of beet sugar factories. Int Sugar J 75:237–241
    [Google Scholar]
  16. Huss V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  17. Jackson C. R., Langner H. W., Donahoe-Christiansen J., Inskeep W. P., McDermott T. R. 2001; Molecular analysis of microbial community structure in an arsenite-oxidizing acidic thermal spring. Environ Microbiol 3:532–542 [CrossRef]
    [Google Scholar]
  18. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  19. Kosma P., Wugeditsch T., Christian R., Zayni S., Messner P. 1995; Glycan structure of a heptose-containing S-layer glycoprotein of Bacillus thermoaerophilus . Glycobiology 5:791–796 erratum 6, 5
    [Google Scholar]
  20. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  21. Mazel D., Guglielmi G., Houmard J., Sidler W., Bryant D. A., Tandeau de Marsac N. 1986; Green light induces transcription of the phycoerythrin operon in the cyanobacterium Calothrix 7601. Nucleic Acids Res 14:8279–8290 [CrossRef]
    [Google Scholar]
  22. Mazurier S., van de Giessen A., Heuvelman K., Wernars K. 1992; RAPD analysis of Campylobacter isolates: DNA fingerprinting without the need to purify DNA. Lett Appl Microbiol 14:260–262 [CrossRef]
    [Google Scholar]
  23. Meier-Stauffer K., Busse H.-J., Rainey F. A. 7 other authors 1996; Description of Bacillus thermoaerophilus sp. nov., to include sugar beet isolates and Bacillus brevis ATCC 12990. Int J Syst Bacteriol 46:532–541 [CrossRef]
    [Google Scholar]
  24. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  25. Messner P., Schäffer C. 2003; Prokaryotic glycoproteins. In Progress in the Chemistry of Organic Natural Products vol. 85 pp  51–124 Edited by Herz W., Falk H., Kirby G. W. Wien: Springer;
    [Google Scholar]
  26. Messner P., Hollaus F., Sleytr U. B. 1984; Paracrystalline cell wall surface layers of different Bacillus stearothermophilus strains. Int J Syst Bacteriol 34:202–210 [CrossRef]
    [Google Scholar]
  27. Messner P., Scheberl A., Schweigkofler W., Hollaus F., Rainey F. A., Burghardt J., Prillinger H. 1997; Taxonomic comparison of different thermophilic sugar beet isolates with glycosylated surface layer (S-layer) proteins and their affiliation to Bacillus smithii . Syst Appl Microbiol 20:559–565 [CrossRef]
    [Google Scholar]
  28. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G., Athylye M., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  29. Mora D., Fortina M. G., Nicastro G., Parini C., Manachini P. L. 1998; Genotypic characterization of thermophilic bacilli: a study on new soil isolates and several reference strains. Res Microbiol 149:711–722 [CrossRef]
    [Google Scholar]
  30. Nazina T. N., Tourova T. P., Poltaraus A. B. 8 other authors 2001; Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus , Bacillus thermocatenulatus , Bacillus thermoleovorans , Bacillus kaustophilus , Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combination G. stearothermophilus , G. thermocatenulatus , G. thermoleovorans , G. kaustophilus , G.thermoglucosidasius and G. thermodenitrificans . Int J Syst Evol Microbiol 51:433–446
    [Google Scholar]
  31. Pikuta E., Lysenko A., Chuvilskaya N., Mendrock U., Hippe H., Suzina N., Nikitin D., Osipov G., Laurinavichius K. 2000; Anoxybacillus pushchinensis gen. nov., sp. nov. a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50:2109–2117 [CrossRef]
    [Google Scholar]
  32. Pikuta E., Cleland D., Tang J. 2003; Aerobic growth of Anoxybacillus pushchinoensis K1T: emended descriptions of A. pushchinoensis and the genus Anoxybacillus . Int J Syst Evol Microbiol 53:1561–1562 [CrossRef]
    [Google Scholar]
  33. Schäffer C., Messner P. 2001; Glycobiology of surface layer proteins. Biochimie 83:591–599 [CrossRef]
    [Google Scholar]
  34. Schäffer C., Müller N., Christian R., Graninger M., Wugeditsch T., Scheberl A., Messner P. 1999; Complete glycan structure of the S-layer glycoprotein of Aneurinibacillus thermoaerophilus GS4-97. Glycobiology 9:407–414 [CrossRef]
    [Google Scholar]
  35. Segrest J. P., Jackson R. L. 1972; Molecular weight determination of glycoproteins by polyacrylamide elctrophoresis in sodium dodecylsulfate. Methods Enzymol 28B:54–63
    [Google Scholar]
  36. Sleytr U. B., Messner P. 1992; Crystalline bacterial cell surface layers (S layers). In Encyclopedia of Microbiology vol 1 pp  605–614 Edited by Lederberg J. San Diego: Academic Press;
    [Google Scholar]
  37. Sleytr U. B., Messner P. 2003; Crystalline bacterial cell surface layers (S layers). In Desk Encyclopedia of Microbiology pp  286–293 Edited by Schaechter M. San Diego: Elsevier Science;
    [Google Scholar]
  38. Sleytr U. B., Messner P., Pum D. 1988; Analysis of crystalline bacterial cell surface layers by freeze-etching, metal shadowing, negative staining, and ultrathin sectioning. Methods Microbiol 20:29–60
    [Google Scholar]
  39. Staley J. T., Gosink J. J. 1999; Poles apart: biodiversity and biogeography of sea ice bacteria. Annu Rev Microbiol 53:189–215 [CrossRef]
    [Google Scholar]
  40. Sung M.-H., Kim H., Bae J.-W. 9 other authors 2002; Geobacillus toebii sp. nov., a novel thermophilic bacterium isolated from hay compost. Int J Syst Evol Microbiol 52:2251–2255 [CrossRef]
    [Google Scholar]
  41. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  42. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63227-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63227-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error