1887

Abstract

A global phylogeny of major eukaryotic lineages is a significant and ongoing challenge to molecular phylogenetics. Currently, there are five hypothesized major lineages or ‘supergroups' of eukaryotes. One of these, the chromalveolates, represents a large fraction of protist and algal diversity. The chromalveolate hypothesis was originally based on similarities between the photosynthetic organelles (plastids) found in many of its members and has been supported by analyses of plastid-related genes. However, since plastids can move between eukaryotic lineages, it is important to provide additional support from data generated from the nuclear-cytosolic host lineage. Genes coding for six different cytosolic proteins from a variety of chromalveolates (yielding 68 new gene sequences) have been characterized so that multiple gene analyses, including all six major lineages of chromalveolates, could be compared and concatenated with data representing all five hypothesized supergroups. Overall support for much of the phylogenies is decreased over previous analyses that concatenated fewer genes for fewer taxa. Nevertheless, four of the six chromalveolate lineages (apicomplexans, ciliates, dinoflagellates and heterokonts) consistently form a monophyletic assemblage, whereas the remaining two (cryptomonads and haptophytes) form a weakly supported group. Whereas these results are consistent with the monophyly of chromalveolates inferred from plastid data, testing this hypothesis is going to require a substantial increase in data from a wide variety of organisms.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63216-0
2005-01-01
2020-04-05
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550487.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63216-0&mimeType=html&fmt=ahah

References

  1. Archibald, J. M. & Keeling, P. J. ( 2002; ). Recycled plastids: a green movement in eukaryotic evolution. Trends Genet 18, 577–584.[CrossRef]
    [Google Scholar]
  2. Archibald, J. M., Longet, D., Pawlowski, J. & Keeling, P. J. ( 2002; ). A novel polyubiquitin structure in Cercozoa and Foraminifera: evidence for a new eukaryotic supergroup. Mol Biol Evol 20, 62–66.
    [Google Scholar]
  3. Baldauf, S. L. & Palmer, J. D. ( 1993; ). Animals and fungi are each other's closest relatives: congruent evidence from multiple proteins. Proc Natl Acad Sci U S A 90, 11558–11562.[CrossRef]
    [Google Scholar]
  4. Baldauf, S. L., Roger, A. J., Wenk-Siefert, I. & Doolittle, W. F. ( 2000; ). A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290, 972–977.[CrossRef]
    [Google Scholar]
  5. Bapteste, E., Brinkmann, H., Lee, J. A. & 8 other authors ( 2002; ). The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A 99, 1414–1419.[CrossRef]
    [Google Scholar]
  6. Ben Ali, A., De Baere, R., Van der Auwera, G., De Wachter, R. & Van de Peer, Y. ( 2001; ). Phylogenetic relationships among algae based on complete large-subunit rRNA sequences. Int J Syst Evol Microbiol 51, 737–749.[CrossRef]
    [Google Scholar]
  7. Bhattacharya, D. & Weber, K. ( 1997; ). The actin gene of the glaucocystophyte Cyanophora paradoxa: analysis of the coding region and introns, and an actin phylogeny of eukaryotes. Curr Genet 31, 439–446.[CrossRef]
    [Google Scholar]
  8. Blanchard, J. L. & Hicks, J. S. ( 1999; ). The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J Eukaryot Microbiol 46, 367–375.[CrossRef]
    [Google Scholar]
  9. Brown, J. R. & Doolittle, W. F. ( 1995; ). Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. Proc Natl Acad Sci U S A 92, 2441–2445.[CrossRef]
    [Google Scholar]
  10. Bruno, W. J., Socci, N. D. & Halpern, A. L. ( 2000; ). Weighted neighbor joining: a likelihood-based approach to distance-based phylogeny reconstruction. Mol Biol Evol 17, 189–197.[CrossRef]
    [Google Scholar]
  11. Cavalier-Smith, T. ( 1999; ). Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol 46, 347–366.[CrossRef]
    [Google Scholar]
  12. Cavalier-Smith, T. ( 2004; ). Chromalveolate diversity and cell megaevolu<1?show=[fo]>tion: interplay of membranes, genomes and cytoskeleton. In Organelles, Genomes and Eukaryotic Evolution, pp. 71–103. Edited by R. P. Hirt & D. Horner. London: Taylor and Francis.
  13. Cavalier-Smith, T. & Chao, E. E. ( 1996; ). Molecular phylogeny of the free-living archezoan Trepomonas agilis and the nature of the first eukaryote. J Mol Evol 43, 551–562.[CrossRef]
    [Google Scholar]
  14. Chadefaud, M. ( 1950; ). Les cellules nageuses des Algues dans l'embranchement des Chromophycées. C R Acad Sci Paris 231, 788–790 (in French).
    [Google Scholar]
  15. Christensen, T. ( 1989; ). The Chromophyta, past and present. In The Chromophyte Algae: Problems and Perspectives. Systematics Association Special Vol. no. 38, pp. 1–12. Edited by J. C. Green, B. S. C. Leadbeater & W. L. Diver. Oxford: Clarendon Press.
  16. Dacks, J. B., Marinets, B. A., Doolittle, W. F., Cavalier-Smith, T. & Logsdon, J. M., Jr ( 2002; ). Analyses of RNA polymerase II genes from free-living protists: phylogeny, long branch attraction, and the eukaryotic big bang. Mol Biol Evol 19, 830–840.[CrossRef]
    [Google Scholar]
  17. Embley, T. M. & Hirt, R. P. ( 1998; ). Early branching eukaryotes? Curr Opin Genet Dev 8, 624–629.[CrossRef]
    [Google Scholar]
  18. Fast, N. M., Kissinger, J. C., Roos, D. S. & Keeling, P. J. ( 2001; ). Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol Biol Evol 18, 418–426.[CrossRef]
    [Google Scholar]
  19. Fast, N. M., Xue, L., Bingham, S. & Keeling, P. J. ( 2002; ). Re-examining alveolate evolution using multiple protein molecular phylogenies. J Eukaryot Microbiol 49, 30–37.[CrossRef]
    [Google Scholar]
  20. Felsenstein, J. ( 1993; ). phylip (phylogenetic inference package). Department of Genetics, University of Washington, Seattle, WA, USA.
  21. Funes, S., Davidson, E., Reyes-Prieto, A., Magallón, S., Herion, P., King, M. P. & Gonzalez-Halphen, D. ( 2002; ). A green algal apicoplast ancestor. Science 298, 2155.[CrossRef]
    [Google Scholar]
  22. Gribaldo, S. & Philippe, H. ( 2002; ). Ancient phylogenetic relationships. Theor Popul Biol 61, 391–408.[CrossRef]
    [Google Scholar]
  23. Guindon, S. & Gascuel, O. ( 2003; ). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52, 696–704.[CrossRef]
    [Google Scholar]
  24. Harper, J. T. & Keeling, P. J. ( 2003; ). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol 20, 1730–1735.[CrossRef]
    [Google Scholar]
  25. Hashimoto, T., Nakamura, Y., Nakamura, F., Shirakura, T., Adachi, J., Goto, N., Okamoto, K. & Hasegawa, M. ( 1994; ). Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol Biol Evol 11, 65–71.
    [Google Scholar]
  26. Hashimoto, T., Nakamura, Y., Kamaishi, T., Nakamura, F., Adachi, J., Okamoto, K. & Hasegawa, M. ( 1995; ). Phylogenetic place of mitochondrion-lacking protozoan, Giardia lamblia, inferred from amino acid sequences of elongation factor 2. Mol Biol Evol 12, 782–793.
    [Google Scholar]
  27. Hirt, R. P., Logsdon, J. M., Jr, Healy, B., Dorey, M. W., Doolittle, W. F. & Embley, T. M. ( 1999; ). Microsporidia are related to Fungi: evidence from the largest subunit of RNA polymerase II and other proteins. Proc Natl Acad Sci U S A 96, 580–585.[CrossRef]
    [Google Scholar]
  28. Kamaishi, T., Hashimoto, T., Nakamura, Y., Nakamura, F., Murata, S., Okada, N., Okamoto, K., Shimzu, M. & Hasegawa, M. ( 1996; ). Protein phylogeny of translation elongation factor EF-1α suggests microsporidians are extremely ancient eukaryotes. J Mol Evol 42, 257–263.[CrossRef]
    [Google Scholar]
  29. Keeling, P. J. ( 2001; ). Foraminifera and Cercozoa are related in actin phylogeny: two orphans find a home? Mol Biol Evol 18, 1551–1557.[CrossRef]
    [Google Scholar]
  30. Keeling, P. J. ( 2004; ). Diversity and evolutionary history of plastids and their hosts. Am J Bot (in press).
    [Google Scholar]
  31. Keeling, P. J. & Doolittle, W. F. ( 1996; ). Alpha-tubulin from early-diverging eukaryotic lineages and the evolution of the tubulin family. Mol Biol Evol 13, 1297–1305.[CrossRef]
    [Google Scholar]
  32. Keeling, P. J. & Inagaki, Y. ( 2004; ). A class of eukaryotic GTPase with a punctate distribution suggesting multiple functional replacements of translation elongation factor-1α. Proc Natl Acad Sci U S A 101, 15380–15385.[CrossRef]
    [Google Scholar]
  33. Keeling, P. J. & Leander, B. S. ( 2003; ). Characterisation of a non-canonical genetic code in the oxymonad Streblomastix strix. J Mol Biol 326, 1337–1349.[CrossRef]
    [Google Scholar]
  34. Keeling, P. J. & Palmer, J. D. ( 2001; ). Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc Natl Acad Sci U S A 98, 10745–10750.[CrossRef]
    [Google Scholar]
  35. Köhler, S., Delwiche, C. F., Denny, P. W., Tilney, L. G., Webster, P., Wilson, R. J. M., Palmer, J. D. & Roos, D. S. ( 1997; ). A plastid of probable green algal origin in Apicomplexan parasites. Science 275, 1485–1489.[CrossRef]
    [Google Scholar]
  36. Kumar, S. & Rzhetsky, A. ( 1996; ). Evolutionary relationships of eukaryotic kingdoms. J Mol Evol 42, 183–193.[CrossRef]
    [Google Scholar]
  37. Kuvardina, O. N., Leander, B. S., Aleshin, V. V., Myl'nikov, A. P., Keeling, P. J. & Simdyanov, T. G. ( 2002; ). The phylogeny of colpodellids (Alveolata) using small subunit rRNA gene sequences suggests they are the free-living sister group to apicomplexans. J Eukaryot Microbiol 49, 498–504.[CrossRef]
    [Google Scholar]
  38. Leander, B. S. & Keeling, P. J. ( 2004; ). Early evolution of dinoflagellates and apicomplexans inferred from HSP90 and actin phylogeny. J Phycol 40, 341–350.[CrossRef]
    [Google Scholar]
  39. McFadden, G. I. & Waller, R. F. ( 1997; ). Plastids in parasites of humans. Bioessays 19, 1033–1040.[CrossRef]
    [Google Scholar]
  40. Morin, L. ( 2000; ). Long branch attraction effects and the status of ‘Basal Eukaryotes’: Phylogeny and structural analysis of the ribosomal RNA gene cluster of the free-living diplomonad Trepomonas agilis. J Eukaryot Microbiol 47, 167–177.[CrossRef]
    [Google Scholar]
  41. Philippe, H. ( 2000; ). Opinion: long branch attraction and protist phylogeny. Protist 151, 307–316.[CrossRef]
    [Google Scholar]
  42. Saldarriaga, J. F., McEwan, M. L., Fast, N. M., Taylor, F. J. R. & Keeling, P. J. ( 2003; ). Multiple protein phylogenies show that Oxyrrhis marina and Perkinsus marinus are early branches of the dinoflagellate lineage. Int J Syst Evol Microbiol 53, 355–365.[CrossRef]
    [Google Scholar]
  43. Simpson, A. G., Radek, R., Dacks, J. B. & O'Kelly, C. J. ( 2002a; ). How oxymonads lost their groove: an ultrastructural comparison of Monocercomonoides and excavate taxa. J Eukaryot Microbiol 49, 239–248.[CrossRef]
    [Google Scholar]
  44. Simpson, A. G., Roger, A. J., Silberman, J. D., Leipe, D. D., Edgcomb, V. P., Jermiin, L. S., Patterson, D. J. & Sogin, M. L. ( 2002b; ). Evolutionary history of ‘early-diverging’ eukaryotes: the excavate taxon Carpediemonas is a close relative of Giardia. Mol Biol Evol 19, 1782–1791.[CrossRef]
    [Google Scholar]
  45. Sogin, M. L. & Silberman, J. D. ( 1998; ). Evolution of the protists and protistan parasites from the perspective of molecular systematics. Int J Parasitol 28, 11–20.[CrossRef]
    [Google Scholar]
  46. Stechmann, A. & Cavalier-Smith, T. ( 2002; ). Rooting the eukaryote tree by using a derived gene fusion. Science 297, 89–91.[CrossRef]
    [Google Scholar]
  47. Stechmann, A. & Cavalier-Smith, T. ( 2003; ). Phylogenetic analysis of eukaryotes using heat-shock protein Hsp90. J Mol Evol 57, 408–419.[CrossRef]
    [Google Scholar]
  48. Strimmer, K. & von Haeseler, A. ( 1996; ). Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. Mol Biol Evol 13, 964–969.[CrossRef]
    [Google Scholar]
  49. Swofford, D. L. ( 2002; ). paup*. Phylogenetic Analysis Using Parsimony (and other methods). Sunderland, MA: Sinauer Associates.
  50. Van de Peer, Y. & De Wachter, R. ( 1997; ). Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site variation in 18S rRNA. J Mol Evol 45, 619–630.[CrossRef]
    [Google Scholar]
  51. Van de Peer, Y., Baldauf, S. L., Doolittle, W. F. & Meyer, A. ( 2000a; ). An updated and comprehensive rRNA phylogeny of (crown) eukaryotes based on rate-calibrated evolutionary distances. J Mol Evol 51, 565–576.[CrossRef]
    [Google Scholar]
  52. Van de Peer, Y., Ben Ali, A. & Meyer, A. ( 2000b; ). Microsporidia: accumulating molecular evidence that a group of amitochondriate and suspectedly primitive eukaryotes are just curious fungi. Gene 246, 1–8.[CrossRef]
    [Google Scholar]
  53. Williamson, D. H., Gardner, M. J., Preiser, P., Moore, D. J., Rangachari, K. & Wilson, R. J. ( 1994; ). The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol Gen Genet 243, 249–252.
    [Google Scholar]
  54. Yoon, H. S., Hackett, J. D. & Bhattacharya, D. ( 2002a; ). A single origin of the peridinin- and fucoxanthin-containing plastids in dinoflagellates through tertiary endosymbiosis. Proc Natl Acad Sci U S A 99, 11724–11729.[CrossRef]
    [Google Scholar]
  55. Yoon, H. S., Hackett, J. D., Pinto, G. & Bhattacharya, D. ( 2002b; ). The single, ancient origin of chromist plastids. Proc Natl Acad Sci U S A 99, 15507–15512.[CrossRef]
    [Google Scholar]
  56. Zhang, Z., Green, B. R. & Cavalier-Smith, T. ( 2000; ). Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol 51, 26–40.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63216-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63216-0
Loading

Data & Media loading...

Supplements

vol. , part 1, pp. 487 - 496

Protein maximum-likelihood (ProML) phylogenies of actin (A), alpha-tubulin (B), beta-tubulin (C), elongation factor-1 alpha (D) and heat-shock protein 70 (HSP70) (E) sequences. Bootstrap values are shown for nodes that received support over 50 %, and are (from left to right) weighted neighbour-joining, Fitch-Margoliash, ProML, PhyML and parsimony (dashes represent support lower than 50 %). Chomalveolate taxa are highlighted with shaded boxes and major groups are bracketed and labelled to the right. Newly determined sequence data are represented by taxon names in bold. [PDF](1124 KB)



PDF

Most cited this month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error