sp. nov., a novel actinomycete that produces 4-phenyl-3-butenoic acid Free

Abstract

A 4-phenyl-3-butenoic acid-producing actinomycete, designated strain VK-A60, was isolated from a soil sample collected from Koyang, Korea. Morphological and chemical characteristics of the strain were consistent with those of the genus . The cell wall of the strain contains -diaminopimelic acid. The predominant fatty acids are anteiso-C, iso-C and C. The strain formed a distinct monophyletic line within the 16S rRNA gene sequence phylogenetic tree. Analyses of its morphological, physiological and biochemical characteristics, together with random amplified polymorphic DNA and DNA–DNA relatedness data, confirmed that strain VK-A60 represents a novel taxon that is distinguishable from closely related reference strains. Strain VK-A60 (=KCCM 10555=NBRC 100598) is proposed as the type strain of a novel species, for which the name sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63168-0
2005-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550257.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63168-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Anderson A. S., Wellington E. M. H. 2001; The taxonomy of Streptomyces and related genera. Int J Syst Evol Microbiol 51:797–814 [CrossRef]
    [Google Scholar]
  3. Berdy J. 1995; Are actinomycetes exhausted as a source of secondary metabolites?. In Proceedings of the 9th International Symposium on the Biology of Actinomycetes , part I pp  3–23 New York: Allerton;
    [Google Scholar]
  4. Chung Y. R., Sung K. C., Mo H. K., Son D. Y., Nam J. S., Chun J. S., Bae K. S. 1999; Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int J Syst Bacteriol 49:753–758 [CrossRef]
    [Google Scholar]
  5. Farris J. S. 1989; The retention index and the rescaled consistency index. Cladistics 5:417–419 [CrossRef]
    [Google Scholar]
  6. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. Guckert J. B., Ringelberg D. B., White D. C., Hanson R. S., Bratina B. J. 1991; Membrane fatty acids as phenotypic markers in the polyphasic taxonomy of methylotrophs within the proteobacteria. J Gen Microbiol 137:2631–2641 [CrossRef]
    [Google Scholar]
  8. Hain T., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E., Rainey F. A. 1997; Discrimination of Streptomyces albidoflavus strains based on the size and the number of 16S-23S ribosomal DNA intergenic spacers. Int J Syst Bacteriol 47:202–206 [CrossRef]
    [Google Scholar]
  9. Hasegawa M., Kiwshino H., Yano T. 1985; Dating the human–ape split by molecular clock of mitochondrial DNA. J Mol Evol 22:160–174 [CrossRef]
    [Google Scholar]
  10. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  11. Labeda D. P. 1993; DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int J Syst Bacteriol 43:822–825 [CrossRef]
    [Google Scholar]
  12. Labeda D. P. 1996; DNA relatedness among verticil-forming Streptomyces species (formerly Streptoverticillium species). Int J Syst Bacteriol 46:699–703 [CrossRef]
    [Google Scholar]
  13. Labeda D. P. 1998; DNA relatedness among the Streptomyces fulvissimus and Streptomyces griseoviridis phenotypic cluster groups. Int J Syst Bacteriol 48:829–832 [CrossRef]
    [Google Scholar]
  14. Lee J. Y. 2002; Production, purification, and control efficacy against plant diseases of the antibiotics Vka1 and Agr1 from Streptomyces sp. strain VK-A60T and rhizome of Acorus gramineus . MSc thesis Korea University; Korea:
  15. Lee J. Y., Hwang B. K. 2002; Diversity of antifungal actinomycetes in various vegetative soils of Korea. Can J Microbiol 48:407–417 [CrossRef]
    [Google Scholar]
  16. Locci R. 1989; Streptomycetes and related genera. In Bergey's Manual of Systematic Bacteriology vol 4 pp  2451–2452 Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Manfio G. P., Zakrzewska-Czerwinska J., Atalan E., Goodfellow M. 1995; Towards minimal standards for the description of Streptomyces species. Biotechnologia 7:8242–253
    [Google Scholar]
  18. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  19. Mehling A., Wehmeier U. F., Piepersberg W. 1995; Application of random amplified polymorphic DNA (RAPD) assays in identifying conserved regions of actinomycete genomes. FEMS Microbiol Lett 128:119–126 [CrossRef]
    [Google Scholar]
  20. Nonomura H. 1974; Key for classification and identification of 458 species of the Streptomycetes included in ISP. J Ferment Technol 52:78–92
    [Google Scholar]
  21. Okami Y., Hotta K. 1988; Search and discovery of new antibiotics. In Actinomycetes in Biotechnology pp  33–67 Edited by Goodfellow M., Williams S. T., Mordarski M. London: Academic Press;
    [Google Scholar]
  22. Pospiech A., Neumann B. 1995; A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends Genet 11:217–218 [CrossRef]
    [Google Scholar]
  23. Pridham T. G., Hesseltine C. W., Benedict R. G. 1958; A guide for the classification of streptomycetes according to selected groups. Placement of strains in morphological sections. Appl Microbiol 6:52–79
    [Google Scholar]
  24. Roberts M. A., Crawford D. L. 2000; Use of randomly amplified polymorphic DNA as a means of developing genus- and strain-specific Streptomyces DNA probes. Appl Environ Microbiol 66:2555–2564 [CrossRef]
    [Google Scholar]
  25. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  26. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  27. Shirling E. B., Gottlieb D. 1969; Cooperative description of type cultures of Streptomyces . IV. Species descriptions from the second, third and fourth studies. Int J Syst Bacteriol 19:391–512 [CrossRef]
    [Google Scholar]
  28. Swofford D. L. 2002 paup* Phylogenetic Analysis Using Parsimony (*and Other Methods), version 4b10 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  29. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  30. Waksman S. A., Henrici A. T. 1943; The nomenclature and classification of the actinomycetes. J Bacteriol 46:337–341
    [Google Scholar]
  31. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  32. Williams S. T., Davies F. L. 1967; Use of a scanning electron microscope for the examination of actinomycetes. J Gen Microbiol 48:171–177 [CrossRef]
    [Google Scholar]
  33. Williams S. T., Goodfellow M., Alderson G., Wellington E. M. H., Sneath P. H. A., Sackin M. J. 1983; Numerical classification of Streptomyces and related genera. J Gen Microbiol 129:1743–1813
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63168-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63168-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited Most Cited RSS feed