Skip to content
1887

Abstract

Johnson and Weisrock 1969 lacks true budding and hyphal branching, and some phenotypic characteristics are in contrast to other true hyphomicrobia. The major quinone system (ubiquinone Q-8), the G+C content of the DNA (40 mol%) and the cellular fatty acid composition (16 : 0, 16 : 1 and 18 : 1 as the major components, and 12 : 0 3-OH and 14 : 0 3-OH as the hydroxy fatty acids) of are different from the genus , but similar to the genus . Like the marine bacteria , can be tolerant of sea water, while cannot. Phylogenetic analyses of 16S rRNA and gene sequences revealed that is most closely related to the genus of the -. Based on the phylogenetic, phenotypic and chemotaxonomic evidence, the results indicate that should be transferred to the genus , and the name comb. nov. (type strain, NBRC 14233=ATCC 19614) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63159-0
2004-11-01
2025-01-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542113.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63159-0&mimeType=html&fmt=ahah

References

  1. Borodina E., Kelly D. P., Schumann P., Rainey F. A., Ward-Rainey N. L., Wood A. P. 2002; Enzymes of dimethylsulfone metabolism and the phylogenetic characterization of the facultative methylotrophs Arthrobacter sulfonivorans sp.nov., Arthrobacter methylotrophus sp. nov., and Hyphomicrobium sulfonivorans sp. nov. Arch Microbiol 177:173–187 [CrossRef]
    [Google Scholar]
  2. Brosius J., Palmer M. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of the 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  4. Gillis M., Vandamme P., De Vos O., Swings J., Kersters K. 2001; Polyphasic taxonomy. In Bergy's Manual of Systematic Bacteriology , 2nd edn. pp  43–88 Edited by Boone D. R., Castenholz R. W., Garrity G. M. London: Springer;
    [Google Scholar]
  5. Hirsch P. 1974; Budding bacteria. Annu Rev Microbiol 28:391–444 [CrossRef]
    [Google Scholar]
  6. Hirsch P. 1989; Genus Hyphomicrobium Stutzer and Hartleb 1898, 76AL. In Bergey's Manual of Systematic Bacteriology . , 9th edn. vol 3 pp  1897–1904 Edited by Staley J. T., Bryant M. P., Pfennig N., Holt J. G. Baltimore: Williams & Wilkins;
  7. Holm N. C., Gliesche C. G., Hirsch P. 1996; Diversity and structure of Hyphomicrobium populations in a sewage treatment plant and its adjacent receiving lake. Appl Environ Microbiol 62:522–528
    [Google Scholar]
  8. Johnson R. M., Weisrock W. P. 1969; Hyphomicrobium indicum sp. nov. Hyphomicrobiaceae douglas. Int J Syst Bacteriol 19:295–307 [CrossRef]
    [Google Scholar]
  9. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  10. Layton A. C., Karanth P. N., Lajoie C. A., Meyers A. J., Gregory I. R., Stapleton R. D., Taylor D. E., Sayler G. S. 2000; Quantification of Hyphomicrobium populations in activated sludge from an industrial wastewater treatment system as determined by 16S rRNA analysis. Appl Environ Microbiol 66:1167–1174 [CrossRef]
    [Google Scholar]
  11. McDonald I. R., Doronina N. V., Trotsenko Y. A., McAnulla C., Murrell J. C. 2001; Hyphomicrobium chloromethanicum sp. nov. and Methylobacterium chloromethanicum sp. nov. chloromethane-utilizing bacteria isolated from a polluted environment. Int J Syst Evol Microbiol 51:119–122
    [Google Scholar]
  12. Nogi Y. Masui N., Kato C. 1998; Photobacterium profundum sp. nov., a new, moderately barophilic bacterial species isolated from a deep-sea sediment. Extremophiles 2:1–7 [CrossRef]
    [Google Scholar]
  13. Rainey F. A., Ward-Rainey N., Gliesche C. G., Stackebrandt E. 1998; Phylogenetic analysis and intrageneric structure of the genus Hyphomicrobium and the related genus Filomicrobium . Int J Syst Bacteriol 48:635–639 [CrossRef]
    [Google Scholar]
  14. Roggentin T., Hirsch P. 1989; Ribosomal RNA cistron similarities among Hyphomicrobium species and several other hyphal, budding bacteria. Syst Appl Microbiol 11:140–147 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Stackebrandt E. R. G., Fischer A., Roggentin T., Wehmeyer U., Bomar D., Smida J. 1988; A phylogenetic survey of budding, and/or prosthecate, non-phototrophic eubacteria: membership of Hyphomicrobium , Hyphomonas , Pedomicrobium , Filomicrobium , Caulobacter and “ Dichotomicrobium ” to the alpha-subdivision of purple non-sulfur bacteria. Arch Microbiol 149:547–556 [CrossRef]
    [Google Scholar]
  17. Swofford D. L. 1998 paup* Phylogenetic analysis using parsimony (* and other methods), version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  19. Tsuji K., Tsien H. C., Hanson R. S., DePalma S. R., Scholtz R., LaRoche S. 1990; 16S ribosomal RNA sequence analysis for determination of phylogenetic relationship among methylotrophs. J Gen Microbiol 136:1–10 [CrossRef]
    [Google Scholar]
  20. Urakami T., Komagata K. 1987; Characterization and identification of methanol-utilizing Hyphomicrobium strains and a comparison with species of Hyphomonas and Rhodomicrobium . J Gen Appl Microbiol 33:521–542 [CrossRef]
    [Google Scholar]
  21. Xie C., Yokota A. 2003; Phylogenetic analysis of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef]
    [Google Scholar]
  22. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63159-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63159-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error