1887

Abstract

A highly efficient dye-decolorizing bacterium, strain S12, was isolated from activated sludge of a textile-printing waste-water treatment plant in Guangzhou, China. The cells were Gram-negative and motile by means of a single polar flagellum. The strain was capable of anaerobic growth either by fermentation of glucose or by anaerobic respiration and utilized a variety of electron acceptors, including nitrate, iron oxide and thiosulfate. The physiological properties, tested by using the Biolog GN2 system, were similar to those of the genus of . Analysis of the nearly complete 16S rRNA gene sequence of strain S12 showed the highest similarity (98 and 97 %, respectively) to and . However, the level of similarity between strain S12 and was 87 %. DNA from strain S12 showed 41·8 and 41·9 % DNA relatedness, respectively, to the DNA of DSM 9439 and DSM 6067. The DNA G+C content of strain S12 was 49·3 mol%. The predominant menaquinone was MK-7 and the predominant ubiquinones were Q-7 and Q-8. The dominant fatty acids were 15 : 0, 16 : 0, iso-15 : 0 and 16 : 17, similar to the profiles of other species. On the basis of its physiological and molecular properties, strain S12 appears to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is S12 (=CCTCC M 203093=IAM 15094).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63157-0
2005-01-01
2021-10-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/1/ijs550363.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63157-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media , p. 684 Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Bowman J. P., McCammon S. A., Nichols D. S., Skerratt J. H., Rea S. M., Nichols P. D., McMeekin T. A. 1997; Shewanella gelidimarina sp. nov., and Shewanella frigidimarina sp. nov. novel Antarctic species with the ability to produce eicosapentaenoic acid (20 : 5 ω 3) and grow anaerobically by dissimilatory Fe(III) reduction. Int J Syst Bacteriol 47:1040–1047 [CrossRef]
    [Google Scholar]
  3. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205
    [Google Scholar]
  4. Brettar I., Christen R., Höfle M. G. 2002; Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic–anoxic interface of the Gotland Deep in the central Baltic Sea. Int J Syst Evol Microbiol 52:2211–2217 [CrossRef]
    [Google Scholar]
  5. Conneely A., Smyth W. F., McMullan G. 1999; Metabolism of the phthalocyanine textile dye remazol turquoise blue by Phanerochaete chrysosporium . FEMS Microbiol Lett 179:333–337 [CrossRef]
    [Google Scholar]
  6. Cowan S. T., Steel K. J. 1993 Manual for the Identification of Medical Bacteria , 3rd edn. Edited and revised by Barrow G. I., Feltham R. K. A. Cambridge: Cambridge University Press;
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Takeuchi N., Yamamoto H., Liu S.-L., Miura H., Matsui K., Yabuuchi E. 1988; Simple genetic method to identify viridans group streptococci by colorimetric dot hybridization and fluorometric hybridization in microdilution wells. J Clin Microbiol 26:1708–1713
    [Google Scholar]
  8. Felsenstein J. 1995 phylip (phylogeny inference package), version 3.57c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  9. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [CrossRef]
    [Google Scholar]
  10. Gascuel O. 1997; bionj: an improved version of the NJ algorithm based on a simple model of sequence data. Mol Biol Evol 14:685–695 [CrossRef]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Ivanova E. P., Sawabe T., Gorshkova N. M., Svetashev V. I., Mikhailov V. V., Nicolau D. V., Christen R. 2001; Shewanella japonica sp. nov. Int J Syst Evol Microbiol 51:1027–1033 [CrossRef]
    [Google Scholar]
  13. Jian H., Tso W., Tso M., Zhang X., Xu M., Deng S., Sun G. 2000; Broad spectrum decolorizing bacterial strains and their functional plasmids. In Environmental Monitoring and Biodiagnostics of Hazardous Contaminants pp  97–104 Edited by Healy M., Wise D. L., Moo-Young M. Dordrecht: Academic Publishers;
    [Google Scholar]
  14. Lovely D. R., Phillips E. J. 1988; Novel mode of microbial dissimilatory reduction of iron or manganese. Appl Environ Microbiol 51:683–689
    [Google Scholar]
  15. Makemson J. C., Fulayfil N. R., Landry W., Van Ert L. M., Wimpee C. F., Widder E. A., Case J. F. 1997; Shewanella woodyi sp. nov., an exclusively respiratory luminous bacterium isolated from the Alboran Sea. Int J Syst Bacteriol 47:1034–1039 [CrossRef]
    [Google Scholar]
  16. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  17. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  18. Minnikin D. E., O'Donnell A. G., Goodfellow M., Alderson G. L., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinines and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  19. Moser D. P., Nealson K. H. 1996; Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl Environ Microbiol 62:2100–2105
    [Google Scholar]
  20. Myers C. R., Nealson K. H. 1988; Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor. Science 240:1319–1321 [CrossRef]
    [Google Scholar]
  21. Nigam P., Singh D., Marchant R. 1996; An investigation of the biodegradation of textile dyes by aerobic and anaevolic microorganisms. In Environmental Biotechnology, Principles and Applications pp  278–287 Edited by Moo-Young M., Amderson W. A., Chakrabarty A. M. Dordrecht: Academic Publishers;
    [Google Scholar]
  22. Nishijima M., Araki-Sakai M., Sano H. 1997; Identification of isoprenoid quinones by frit-FAB liquid chromatography–mass spectrometry for the chemotaxonomy of microorganisms. J Microbiol Methods 28:113–122 [CrossRef]
    [Google Scholar]
  23. Nozue H., Hayashi T., Hashimoto Y., Ezaki T., Hamasaki K., Ohwaka K., Terawaki Y. 1992; Isolation and characterization of Shewanella alga from human clinical specimens and emendation of the description of S. alga Simidu et al 1990, 335. Int J Syst Bacteriol 42:628–634 [CrossRef]
    [Google Scholar]
  24. Perrière G., Gouy M. 1996; WWW-query: an on-line retrieval system for biological sequence banks. Biochimie 78:364–369 [CrossRef]
    [Google Scholar]
  25. Perry K. A., Kostka J. E., Luther G. W. III, Nealson K. H. 1993; Mediation of sulfur speciation by a Black Sea facultative anaerobe. Science 259:801–803 [CrossRef]
    [Google Scholar]
  26. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  27. Satomi M., Oikawa H., Yano Y. 2003; Shewanella marinintestina sp. nov., Shewanella schlegeliana sp. nov. and Shewanella sairae sp. nov., novel eicosapentaenoic-acid-producing marine bacteria isolated from sea-animal intestines. Int J Syst Evol Microbiol 53:491–499 [CrossRef]
    [Google Scholar]
  28. Sawabe T., Makino H., Tatsumi M., Nakano K., Tajima K., Iqbal M. M., Yumoto I., Ezura Y., Christen R. 1998; Pseudomoalteromonas bacteriolytica sp. nov., a marine bacterium that is the causative agent of red spot disease of Laminaria japonica . Int J Syst Bacteriol 48:769–774 [CrossRef]
    [Google Scholar]
  29. Skerratt J. H., Bowman J. P., Nichols P. D. 2002; Shewanella olleyana sp. nov., a marine species isolated from a temperate estuary which produces high levels of polyunsaturated fatty acids. Int J Syst Evol Microbiol 52:2101–2106 [CrossRef]
    [Google Scholar]
  30. Song Y.-J., Yang R.-F., Guo Z.-B., Zhang M.-L., Wang X.-H., Zhou F. 2000; Distinctness of spore and vegetative cellular fatty acid profiles of some aerobic endospore-forming bacilli. J Microbiol Methods 39:225–241 [CrossRef]
    [Google Scholar]
  31. Venkateswaran K., Dollhopf M. E., Aller R., Stackebrandt E., Nealson K. H. 1998a; Shewanella amazonensis sp. nov., a novel metal-reducing facultative anaerobe from Amazonian shelf muds. Int J Syst Bacteriol 48:965–972 [CrossRef]
    [Google Scholar]
  32. Venkateswaran K., Dohmoto N., Harayama S. 1998b; Cloning and nucleotide sequence of the gyrB gene of Vibrio parahaemolyticus and its application in detection of this pathogen in shrimp. Appl Environ Microbiol 64:681–687
    [Google Scholar]
  33. Venkateswaran K., Moser D. P., Dollhopf M. E. 10 other authors 1999; Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int J Syst Bacteriol 49:705–724 [CrossRef]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  35. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109
    [Google Scholar]
  36. Yatome C., Ogawa T., Hayashi H., Ogawa T. 1991; Microbial reduction of azo dyes by several strains. J Environ Sci Health 26:471–485
    [Google Scholar]
  37. Yáñez M. A., Catalán V., Apráiz D., Figueras M. J., Martínez-Murcia A. J. 2003; Phylogenetic analysis of members of the genus Aeromonas based on gyrB gene sequences. Int J Syst Evol Microbiol 53:875–883 [CrossRef]
    [Google Scholar]
  38. Ziemke F., Höfle M. G., Lalucat J., Roselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen's genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [CrossRef]
    [Google Scholar]
  39. Zissi U., Lyberatos G., Pavlou S. 1997; Biodegradation of p -aminoazobenzene by Bacillus subtilis under aerobic conditions. J Ind Microbiol Biotechnol 19:49–55 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63157-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63157-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error