1887

Abstract

A Gram-negative, non-sporulating, rod-shaped, motile bacterium, with a single polar flagellum, designated strain PsJN, was isolated from surface-sterilized onion roots. This isolate proved to be a highly effective plant-beneficial bacterium, and was able to establish rhizosphere and endophytic populations associated with various plants. Seven related strains were recovered from Dutch soils. Based on 16S rRNA gene sequence data, strain PsJN and the Dutch strains were identified as representing a member of the genus , as they were closely related to (98·7 %) and (98·5 %). Analysis of whole-cell protein profiles and DNA–DNA hybridization experiments confirmed that all eight strains belonged to a single species. Strain PsJN had a DNA G+C content of 61·0 mol%. Only low levels of DNA–DNA hybridization to closely related species were found. Qualitative and quantitative differences in fatty acid composition between strain PsJN and closely related species were identified. The predominant fatty acids in strain PsJN were 16 : 0, 18 : 17 and summed feature 3 (comprising 16 : 17 and/or iso-15 : 0 2-OH). Isolate PsJN showed high 1-aminocyclopropane-1-carboxylate deaminase activity and is therefore able to lower the ethylene level in a developing or stressed plant. Production of the quorum-sensing signal compound 3-hydroxy-C8-homoserine lactone was detected. Based on the results of this polyphasic taxonomic study, strain PsJN and the seven Dutch isolates are considered to represent a single, novel species, for which the name sp. nov. is proposed. The type strain is strain PsJN (=LMG 22146=CCUG 49060).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63149-0
2005-05-01
2019-09-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/55/3/ijs551187.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63149-0&mimeType=html&fmt=ahah

References

  1. Ait Barka, E., Belarbi, A., Hachet, C., Nowak, J. & Audran, J.-C. ( 2000; ). Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186, 91–95.[CrossRef]
    [Google Scholar]
  2. Ait Barka, E., Gognies, S., Nowak, J., Audran, J.-C. & Belarbi, A. ( 2002; ). Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24, 135–142.[CrossRef]
    [Google Scholar]
  3. Bensalim, S., Nowak, J. & Asiedu, S. K. ( 1998; ). A plant growth promoting rhizobacterium and temperature effects on performance of 18 clones of potato. Am J Potato Res 75, 145–152.[CrossRef]
    [Google Scholar]
  4. Burkholder, W. H. ( 1950; ). Sour skin, a bacterial rot of onion bulbs. Phytopathology 40, 115–117.
    [Google Scholar]
  5. Cha, C., Gao, P., Chen, Y. C., Shaw, P. D. & Farrand, S. K. ( 1998; ). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Mol Plant Microbe Interact 11, 1119–1129.[CrossRef]
    [Google Scholar]
  6. Coenye, T. & Vandamme, P. ( 2003; ). Diversity and significance of Burkholderia species occupying diverse ecological niches. Environ Microbiol 5, 719–729.[CrossRef]
    [Google Scholar]
  7. Coenye, T., Laevens, S., Willems, A., Ohlén, M., Hannant, W., Govan, J. R. W., Gillis, M., Falsen, E. & Vandamme, P. ( 2001a; ). Burkholderia fungorum sp. nov. and Burkholderia caledonica sp. nov., two new species isolated from the environment, animals and human clinical samples. Int J Syst Evol Microbiol 51, 1099–1107.[CrossRef]
    [Google Scholar]
  8. Coenye, T., Vandamme, P., Govan, J. R. W. & LiPuma, J. J. ( 2001b; ). Taxonomy and identification of the Burkholderia cepacia complex. J Clin Microbiol 39, 3427–3436.[CrossRef]
    [Google Scholar]
  9. Coenye, T., Goris, J., Spilker, T., Vandamme, P. & LiPuma, J. J. ( 2002; ). Characterization of unusual bacteria isolated from respiratory secretions of cystic fibrosis patients and description of Inquilinus limosus gen. nov., sp. nov. J Clin Microbiol 40, 2062–2069.[CrossRef]
    [Google Scholar]
  10. Compant, S., Reiter, B., Sessitsch, A., Nowak, J., Clement, C. & Ait Barka, E. ( 2005; ). Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71, 1685–1693.[CrossRef]
    [Google Scholar]
  11. Corpet, F. ( 1988; ). Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16, 10881–10890.[CrossRef]
    [Google Scholar]
  12. El Banna, N. & Winkelmann, G. ( 1998; ). Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes. J Appl Microbiol 85, 69–78.[CrossRef]
    [Google Scholar]
  13. Estrada de los Santos, P., Bustillos-Cristales, R. & Caballero-Mellado, J. ( 2001; ). Burkholderia, a genus rich in plant-associated nitrogen fixers with wide environmental and geographic distribution. Appl Environ Microbiol 67, 2790–2798.[CrossRef]
    [Google Scholar]
  14. Frommel, M. I., Nowak, J. & Lazarovits, G. ( 1991; ). Growth enhancement and developmental modifications of in vitro grown potato (Solanum tuberosum ssp. tuberosum) as affected by a nonfluorescent Pseudomonas sp. Plant Physiol 96, 928–936.[CrossRef]
    [Google Scholar]
  15. Fuqua, C. & Greenberg, E. P. ( 2002; ). Listening in on bacteria: acyl-homoserine lactone signalling. Nat Rev Mol Cell Biol 3, 685–695.[CrossRef]
    [Google Scholar]
  16. Gotschlich, A., Huber, B., Geisenberger, O. & 11 other authors ( 2001; ). Synthesis of multiple N-acylhomoserine lactones is widespread among the members of the Burkholderia cepacia complex. Syst Appl Microbiol 24, 1–14.[CrossRef]
    [Google Scholar]
  17. King, E. O., Ward, M. K. & Raney, D. E. ( 1954; ). Two simple media for the demonstration of pycocyanin and fluorescein. J Lab Clin Med 44, 301–307.
    [Google Scholar]
  18. Lazarovits, G. & Nowak, J. ( 1997; ). Rhizobacteria for improvement of plant growth and establishment. HortScience 32, 188–192.
    [Google Scholar]
  19. Lewenza, S., Conway, B., Greenberg, E. P. & Sokol, P. A. ( 1999; ). Quorum sensing in Burkholderia cepacia: identification of the LuxRI homologs CepRI. J Bacteriol 181, 748–756.
    [Google Scholar]
  20. Lutter, E., Lewenza, S., Dennis, J. J., Visser, M. B. & Sokol, P. A. ( 2001; ). Distribution of quorum-sensing genes in the Burkholderia cepacia complex. Infect Immun 69, 4661–4666.[CrossRef]
    [Google Scholar]
  21. McClean, K. H., Winson, M. K., Fish, L. & 9 other authors ( 1997; ). Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology 143, 3703–3711.[CrossRef]
    [Google Scholar]
  22. Nowak, J. ( 1998; ). Benefits of in vitro “biotization” of plant tissue cultures with microbial inoculants. In Vitro Cell Dev Biol Plant 34, 122–130.[CrossRef]
    [Google Scholar]
  23. Nowak, J. & Shulaev, V. ( 2003; ). Priming for transplant stress resistance in in vitro propagation. In Vitro Cell Dev Biol Plant 39, 107–124.[CrossRef]
    [Google Scholar]
  24. Nowak, J., Asiedu, S. K. & Lazarovits, G. ( 1995; ). Enhancement of in vitro growth and transplant stress tolerance of potato and vegetable plants co-cultured with a plant growth promoting rhizobacterium. In Ecophysiology and Photosynthetic In Vitro Cultures, pp. 173–180. Edited by F. Carre & P. Chagvardieff. Aix-en-Provence: CEA.
  25. Nowak, J., Asiedu, S. K., Bensalim, S., Richards, J., Stewart, A., Smith, C., Stevens, D. & Sturz, A. V. ( 1997; ). From laboratory to applications: challenges and progress with in vitro dal cultures of potato and beneficial bacteria. In Pathogen and Microbial Contamination Management in Micropropagation, pp. 321–329. Edited by A. Cassells. Dordrecht: Kluwer Academic Publishers.
  26. Paisley, R. ( 1996; ). MIS Whole Cell Fatty Acid Analysis by Gas Chromatography Training Manual. Newark, DE: MIDI, Inc.
  27. Parke, J. L. & Gurian-Sherman, D. ( 2001; ). Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39, 225–258.[CrossRef]
    [Google Scholar]
  28. Penrose, D. M. & Glick, B. R. ( 2003; ). Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118, 10–15.[CrossRef]
    [Google Scholar]
  29. Pierson, L. S., III, Wood, D. W. & Pierson, E. A. ( 1998; ). Homoserine lactone-mediated gene regulation in plant-associated bacteria. Annu Rev Phytopathol 36, 207–225.[CrossRef]
    [Google Scholar]
  30. Pillay, V. K. & Nowak, J. ( 1997; ). Inoculum density, temperature, and genotype effects on in vitro growth promotion and epiphytic and endophytic colonization of tomato (Lycopersicon esculentum L.) seedlings inoculated with a pseudomonad bacterium. Can J Microbiol 43, 354–361.[CrossRef]
    [Google Scholar]
  31. Reiter, B., Pfeifer, U., Schwab, H. & Sessitsch, A. ( 2002; ). Response of endophytic bacterial communities in potato plants to infection with Erwinia carotovora subsp. atroseptica. Appl Environ Microbiol 68, 2261–2268.[CrossRef]
    [Google Scholar]
  32. Salles, J. F., van Elsas, J. D. & van Veen, J. A. ( 2005; ). Effect of agricultural management regimes on Burkholderia community structure in soil. Microb Ecol (in press).
    [Google Scholar]
  33. Shah, S., Li, J., Moffatt, B. A. & Glick, B. R. ( 1998; ). Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44, 833–843.[CrossRef]
    [Google Scholar]
  34. Sharma, V. & Nowak, J. ( 1998; ). Enhancement of verticillium wilt resistance in tomato transplants by in vitro co-culture of seedlings with a plant growth promoting rhizobacterium (Pseudomonas sp. strain PsJN). Can J Microbiol 44, 528–536.[CrossRef]
    [Google Scholar]
  35. Shaw, P. D., Ping, G., Daly, S. L., Cha, C., Cronan, J. E., Jr, Rinehart, K. L. & Farrand, S. K. ( 1997; ). Detecting and characterizing N-acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94, 6036–6041.[CrossRef]
    [Google Scholar]
  36. Strunk, O., Gross, O., Reichel, B. & 11 other authors ( 2000; ). arb: a software environment for sequence data. http://www.arb-home.de/
  37. Tran Van, V., Berge, O., Ngo, K. S., Balandreau, J. & Heulin, T. ( 2000; ). Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218, 273–284.
    [Google Scholar]
  38. Vandamme, P., Gillis, M., Vancanneyt, M., Hoste, B., Kersters, K. & Falsen, E. ( 1993; ). Moraxella lincolnii sp. nov., isolated from the human respiratory tract, and reevaluation of the taxonomic position of Moraxella osloensis. Int J Syst Bacteriol 43, 474–481.[CrossRef]
    [Google Scholar]
  39. Van de Peer, Y. & De Wachter, R. ( 1994; ). treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10, 569–570.
    [Google Scholar]
  40. Whitehead, N. A., Barnard, A. M. L., Slater, H., Simpson, N. J. L. & Salmond, G. P. C. ( 2001; ). Quorum sensing in Gram-negative bacteria. FEMS Microbiol Rev 25, 365–404.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63149-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63149-0
Loading

Data & Media loading...

Neighbour-joining tree (Kimura distances) showing the phylogenetic position of sp. nov. within the genus based on 16S rRNA gene sequence analysis. [PDF](51 KB)

PDF

Dendrogram derived from the unweighted pair group average linkage of correlation coefficients between the protein patterns of the strains studied. [PDF](120 KB)

PDF

Colonization of cross-sections of chickpea roots with PsJN tagged with GFP. Chickpea roots were colonized by PsJN 4 days after inoculation. Bacterial cells are tightly associated with parenchyma cells (C) and xylem vessels (D). Arrows indicate the localization of bacteria. Bars, 40 µm (C) or 100 µm (D).

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error