1887

Abstract

A psychrotolerant, obligately alkaliphilic bacterium, IDR2-2, which is able to reduce indigo dye was isolated from a fermented polygonum indigo ( Lour.) produced in Date, Hokkaido, using a traditional Japanese method. The isolate grew at pH 9–12 but not at pH 7–8. It was a Gram-positive, facultatively anaerobic, straight rod-shaped bacterium with peritrichous flagella. The isolate grew in 0–17 % (w/v) NaCl but not at NaCl concentrations higher than 18 % (w/v). Its major cellular fatty acids were C, C, C9 and C9, and its DNA G+C content was 40·6 mol%. -lactic acid was the major end-product from -glucose. No quinones could be detected. The peptidoglycan type was A4, Orn–-Glu. A phylogenetic analysis based on 16S rRNA gene sequence data indicated that strain IDR2-2 is a member of the genus . DNA–DNA hybridization revealed low relatedness (less than 25 %) between the isolate and two phylogenetically related strains, and . On the basis of phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, the isolate merits classification as a novel species, for which the name sp. nov. is proposed. The type strain is IDR2-2 (=JCM 12281=NCIMB 13981).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63130-0
2004-11-01
2019-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63130-0&mimeType=html&fmt=ahah

References

  1. Barrow, G. I. & Feltham, R. K. A. (editors) ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  2. Belduz, A. O., Dulger, S. & Demirbag, Z. ( 2003; ). Anoxybacillus gonensis sp. nov., a moderately thermophilic, xylose-utilizing, endospore-forming bacterium. Int J Syst Evol Microbiol 53, 1315–1320.[CrossRef]
    [Google Scholar]
  3. Brosius, J., Palmer, J. L., Kennedy, J. P. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  4. Duckworth, A. W., Grant, W. D., Jones, B. E. & Steenbergen, R. ( 1996; ). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Lett 19, 181–191.[CrossRef]
    [Google Scholar]
  5. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  6. Horikoshi, K. ( 1991; ). Microorganisms in Alkaline Environments. Weinheim: VCH.
  7. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  8. Ishikawa, M., Nakajima, K., Yanagi, M., Yamamoto, Y. & Yamasato, K. ( 2003; ). Marinilactibacillus psychrotolerans gen. nov., sp. nov., a halophilic and alkaliphilic marine lactic acid bacterium isolated from marine organisms in temperate and subtropical areas of Japan. Int J Syst Evol Microbiol 53, 711–720.[CrossRef]
    [Google Scholar]
  9. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  10. Krulwich, T. A. & Guffanti, A. A. ( 1989; ). Alkalophilic bacteria. Annu Rev Microbiol 43, 435–463.[CrossRef]
    [Google Scholar]
  11. Krulwich, T. A., Ito, M. & Guffanti, A. A. ( 2001; ). The Na+-dependence of alkaliphily in Bacillus. Biochim Biophys Acta 1505, 158–168.[CrossRef]
    [Google Scholar]
  12. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  13. Ntougias, S. & Russell, N. J. ( 2001; ). Alkalibacterium olivoapovliticus gen. nov., sp. nov., a new obligately alkaliphilic bacterium isolated from edible-olive wash waters. Int J Syst Evol Microbiol 51, 1161–1170.[CrossRef]
    [Google Scholar]
  14. Okada, S., Uchimura, T. & Kozaki, M. ( 1992; ). Laboratory Manual for Lactic Acid Bacteria. Tokyo: Asakura-shoten (in Japanese).
  15. Padden, A. N., Dillon, V. M., Edmonds, J., Collins, M. D., Alvarez, N. & John, P. ( 1999; ). An indigo-reducing moderate thermophile from a woad vat, Clostridium isatidis sp. nov. Int J Syst Bacteriol 49, 1025–1031.[CrossRef]
    [Google Scholar]
  16. Pikuta, E., Lysenko, A., Chuvilskaya, N., Mendrock, U., Hippe, H., Suzina, N., Nikitin, D., Osipov, G. & Laurinavichius, K. ( 2000; ). Anoxybacillus pushchinensis gen. nov., sp. nov., a novel anaerobic, alkaliphilic, moderately thermophilic bacterium from manure, and description of Anoxybacillus flavithermus comb. nov. Int J Syst Evol Microbiol 50, 2109–2117.[CrossRef]
    [Google Scholar]
  17. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  18. Takahara, Y. & Tanabe, O. ( 1960; ). Studies on the reduction of indigo in industrial fermentation vat (VII). J Ferment Technol 38, 329–331.
    [Google Scholar]
  19. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  20. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  21. Thongaram, T., Kosono, S., Ohkuma, M., Hongoh, Y., Kitada, M., Yoshinaka, T., Trakulnaleamsai, S., Noparatnaraporn, N. & Kudo, T. ( 2003; ). Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture-independent studies. Microb Environ 18, 152–159.[CrossRef]
    [Google Scholar]
  22. Yumoto, I. ( 2002; ). Bioenergetics of alkaliphilic Bacillus spp. J Biosci Bioeng 93, 342–353.[CrossRef]
    [Google Scholar]
  23. Yumoto, I. ( 2003; ). Electron transport system in alkaliphilic Bacillus spp. Recent Res Devel Bacteriol 1, 131–149.
    [Google Scholar]
  24. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H. ( 1998; ). Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef]
    [Google Scholar]
  25. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Suemori, A., Nakajima, K., Inoue, N. & Kawasaki, K. ( 2001; ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51, 349–355.
    [Google Scholar]
  26. Yumoto, I., Nakamura, A., Iwata, H., Kojima, K., Kusumoto, K., Nodasaka, Y. & Matsuyama, H. ( 2002; ). Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52, 85–90.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63130-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63130-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error