1887

Abstract

On the basis of phenotypic, genotypic and chemotaxonomic characteristics, a novel species belonging to the genus is described. A facultatively psychrophilic bacterium, strain AG31, was isolated from an alpine ice cave. The aerobic, Gram-positive, non-spore-forming, non-motile strain exhibited a rod–coccus growth cycle and produced a yellow pigment. Good growth and phenol biodegradation occurred at a temperature range of 1–25 °C. Up to 10 mM phenol was utilized as a sole carbon source. Glucose was not assimilated. Analysis of the 16S rRNA gene revealed that strain AG31 represents a distinct lineage within the genus , being most closely related to . The level of DNA–DNA relatedness to the type strain of was 29·9 %. Anteiso-C was the predominant fatty acid (72 %). Strain AG31 exhibited A4 -lys–-Glu-type peptidoglycan and contained glucose as the only cell-wall sugar. MK-10 was the predominant menaquinone, and the polar lipid pattern consisted of phosphatidylglycerol, diphosphatidylglycerol, phosphatidylinositol and an unidentified glycolipid. Strain AG31 (=DSM 15454=LMG 21914) is assigned as the type strain of a novel species, sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63124-0
2004-11-01
2021-03-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542067.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63124-0&mimeType=html&fmt=ahah

References

  1. Bej A. K., Saul D., Aislabie J. 2000; Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105 [CrossRef]
    [Google Scholar]
  2. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  3. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  4. De Soete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  5. DSMZ 2001 Catalogue of Strains , 7th edn. Braunschweig: Deutsche Sammlung für Mikroorganismen und Zellkulturen;
    [Google Scholar]
  6. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1993 phylip (phylogeny interference package), version 3.5c. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  8. Gounot A. M. 1967; Biologic role of Arthrobacter in subterranean soils. Ann Inst Pasteur (Paris) 113:923–945 (in French
    [Google Scholar]
  9. Gounot A. M. 1999; Microbial life in permanently cold soils. In Cold-Adapted Organisms pp  3–15 Edited by Margesin R., Schinner F. Berlin: Springer;
    [Google Scholar]
  10. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov. a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef]
    [Google Scholar]
  11. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  12. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  13. Juck D., Charles T., Whyte L. G., Greer C. W. 2000; Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated oils from two northern Canadian communities. FEMS Microbiol Ecol 33:241–249 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Keddie R. M., Cure G. L. 1978; Cell wall composition of coryneform bacteria. In Coryneform Bacteria pp  47–83 Edited by Bousfield I. J., Callely A. G. London: Academic Press;
    [Google Scholar]
  16. Keddie R. M., Collins M. D., Jones D. 1986; Genus Arthrobacter . In Bergey's Manual of Systematic Bacteriology vol. 2 pp  1288–1301 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  17. Khizhnyak S. V., Tausheva I. V., Berezikova A. A., Nesterenko E. V., Rogozin D. Y. 2003; Psychrophilic and psychrotolerant heterotrophic microorganisms of middle Siberian karst cavities. Russ J Ecol 34:231–235 [CrossRef]
    [Google Scholar]
  18. Loveland-Curtze J., Sheridan P. P., Gutshall K. R., Brenchley J. E. 1999; Biochemical and phylogenetic analyses of psychrophilic isolates belonging to the Arthrobacter subgroup and description of Arthrobacter psychrolactophilus sp. nov. Arch Microbiol 171:355–363 [CrossRef]
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Parker C. T. Jr 11 other authors 1999; A new version of the RDP (Ribosomal Database Project. Nucleic Acids Res 27:171–173 [CrossRef]
    [Google Scholar]
  20. Margesin R., Schinner F. (editors) 1999 Biotechnological Applications of Cold-Adapted Organisms Berlin: Springer;
    [Google Scholar]
  21. Margesin R., Feller G., Gerday C., Russell N. J. 2002; Cold-adapted microorganisms: adaptation strategies and biotechnological potential. In The Encyclopedia of Environmental Microbiology vol 2 pp  871–885 Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  22. Margesin R., Labbé D., Schinner F., Greer C. W., Whyte L. G. 2003a; Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl Environ Microbiol 69:3085–3092 [CrossRef]
    [Google Scholar]
  23. Margesin R., Gander S., Zacke G., Gounot A. M., Schinner F. 2003b; Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458 [CrossRef]
    [Google Scholar]
  24. Margesin R., Bergauer P., Gander S. 2004; Degradation of phenol and toxicity of phenolic compounds: a comparison of cold-tolerant Arthrobacter sp. and mesophilic Pseudomonas putida . Extremophiles 8:201–207 [CrossRef]
    [Google Scholar]
  25. Miller L. T. 1982; A single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  26. Moiroud A., Gounot A. M. 1969; A obligatory psychrophile bacteria isolated from glacial mud. C R Acad Sci Hebd Seances Acad Sci D 269:2150–2152
    [Google Scholar]
  27. Morita R. Y. 1975; Psychrophilic bacteria. Bacteriol Rev 39:144–167
    [Google Scholar]
  28. Nakagawa T., Fujimoto Y., Uchino M., Takano K., Tomizuka N. 2003; Isolation and characterization of psychrophiles producing cold-active β -galactosidase. Lett Appl Microbiol 37:154–157 [CrossRef]
    [Google Scholar]
  29. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  30. Reddy G. S. N., Aggarwal R. K., Matsumoto G. I., Stackebrandt E., Shivaji S. 2000; Arthrobacter flavus sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. Int J Syst Evol Microbiol 50:1553–1561 [CrossRef]
    [Google Scholar]
  31. Reddy G. S. N., Prakash J. S. S., Matsumoto G. I., Stackebrandt E., Shivaji S. 2002; Arthrobacter roseus sp. nov., a psychrophilic bacterium isolated from an Antarctic cyanobacterial mat sample. Int J Syst Evol Microbiol 52:1017–1021 [CrossRef]
    [Google Scholar]
  32. Russell N. J. 1998; Molecular adaptations in psychrophilic bacteria: potential for biotechnological applications. In Advances in Biochemical Engineering/Biotechnology vol 61 pp  1–21 Edited by Scheper T. Berlin: Springer;
    [Google Scholar]
  33. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsl 20:1–6
    [Google Scholar]
  34. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  35. Stackebrandt E., Schumann P. 2000 Introduction to the taxonomy of actinobacteria. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edition, release 3.3. Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. New York: Springer; http://141.150.157.117:8080/prokPUB/index.htm
    [Google Scholar]
  36. Stackebrandt E., Fowler V. J., Fiedler F., Seiler H. 1983; Taxonomic studies on Arthrobacter nicotianae and related taxa: description of Arthrobacter uratoxydans sp.nov. and Arthrobacter sulfureus sp. nov. and reclassification of Brevibacterium protophormiae as Arthrobacter protophormiae comb. nov. Syst Appl Microbiol 4:470–486 [CrossRef]
    [Google Scholar]
  37. Staneck J. L., Roberts G. D. 1974; Simplified approach to identification of aerobic actinomycetes by thin-layer chromatography. Appl Microbiol 28:226–231
    [Google Scholar]
  38. Stibor M., Potocky M., Pickova A., Karasova P., Russell N. J., Kralova B. 2003; Characterization of cold-active dehydrogenases for secondary alcohols and glycerol in psychrotolerant bacteria isolated from Antarctic soil. Enzyme Microb Technol 32:532–538 [CrossRef]
    [Google Scholar]
  39. Süßmuth R., Eberspächer J., Haag R., Springer W. 1987 Biochemical and Microbiological Training Stuttgart: Thieme (in German;
    [Google Scholar]
  40. Westerberg K., Elväng A. M., Stackebrandt E., Jansson J. K. 2000; Arthrobacter chlorophenolicus sp. nov., a new species capable of degrading high concentrations of 4-chlorophenol. Int J Syst Evol Microbiol 50:2083–2092 [CrossRef]
    [Google Scholar]
  41. Yamada Y., Inouye G., Tahara Y., Kondo K. 1976; The menaquinone system in the classification of coryneform and nocardioform bacteria and related organisms. J Gen Appl Microbiol 22:203–214 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63124-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63124-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error