1887

Abstract

A novel sulphate-reducing bacterium (Al1) was recovered from a soured oil well in Purdu Bay, Alaska. Light and atomic force microscopy observations revealed that cells were Gram-negative, vibrio-shaped and motile by means of a single polar flagellum. The carbon and energy sources used by the isolate and the salinity, temperature and pH ranges facilitating its growth proved to be typical of a partial lactate-oxidizing, moderately halophilic, mesophilic, sulphate-reducing bacterium. Analysis of the fatty acid profile revealed that C, isoC and isoC 7 were the predominant species. Fatty acid profile and complete 16S rRNA gene sequencing demonstrated the similarity between strain Al1 and members of the genus . The position of strain Al1 within the phylogenetic tree indicated that it clustered closely with DSM 10520 (98·9 % sequence similarity), a strain recovered from a similar habitat. However, whole-cell protein profiles, Fourier-transform infrared studies and DNA–DNA hybridization demonstrated that, in spite of the high level of 16S rRNA gene sequence similarity, there is sufficient dissimilarity at the DNA sequence level between DSM 10520 and strain Al1 (10·2 % similarity) to propose that strain Al1 belongs to a separate species within the genus . Based on the results obtained, the name sp. nov. is therefore proposed, with Al1 (=NCIMB 13491=DSM 16109) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63118-0
2004-09-01
2024-12-08
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541747.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63118-0&mimeType=html&fmt=ahah

References

  1. Beech I. B., Cheung C. W. S. 1995; Interactions of exopolymers produced by sulphate-reducing bacteria with metal ions. Int Biodeterior Biodegrad 35:59–72 [CrossRef]
    [Google Scholar]
  2. Beech I. B., Cheung C. W. S., Chan C. S. P., Hill M. A., Franco R., Lino A. R. 1994; Study of parameters implicated in the biodeterioration of mild steel in the presence of different species of sulphate-reducing bacteria. Int Biodeterior Biodegrad 34:289–303 [CrossRef]
    [Google Scholar]
  3. Bligh E. G., Dyer W. J. 1959; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917 [CrossRef]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Devereux R., He S. H., Doyle C. L., Orkland S., Stahl D. A., LeGall J., Whitman W. B. 1990; Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J Bacteriol 172:3609–3619
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Feio M. J., Beech I. B., Carepo M. 8 other authors 1998; Isolation and characterization of a novel sulphate-reducing bacterium of the Desulfovibrio genus. Anaerobe 4:117–130 [CrossRef]
    [Google Scholar]
  9. Feio M. J., Beech I. B., Carepo M. 8 other authors 2000; Desulfovibrio indonesiensis corrig. sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM List no 75 Int J Syst Evol Microbiol 50:1415–1417 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1993 phylip (phylogenetic inference package), version 3.5c Department of Genetics, University of Washington; Seattle, WA, USA:
    [Google Scholar]
  11. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [CrossRef]
    [Google Scholar]
  12. Guezennec J. 1991; Influence of cathodic protection of mild steel on the growth of sulphate-reducing bacteria at 35 °C in marine sediments. Biofouling 3:339–348 [CrossRef]
    [Google Scholar]
  13. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  14. Jackman P. J. H. 1987; Microbial systematics based on electrophoretic whole-cell protein patterns. Methods Microbiol 19:209–225
    [Google Scholar]
  15. Jahnke K. D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  16. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  17. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp  115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  18. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K.-H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Lilburn T. G. 9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  20. Messing J., Crea R., Seeburg P. H. 1981; A system for shotgun DNA sequencing. Nucleic Acids Res 9:309–321 [CrossRef]
    [Google Scholar]
  21. Nga D. P., Ha D. T. C., Hien L. T., Stan-Lotter H. 1996; Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385–392 [CrossRef]
    [Google Scholar]
  22. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [CrossRef]
    [Google Scholar]
  23. Postgate J. R. 1984 The Sulphate-reducing Bacteria Cambridge: Cambridge University Press;
    [Google Scholar]
  24. Sambrook J., Fritsch E. F., Maniatis T. 1989; Gel electrophoresis of DNA. In Molecular Cloning: a Laboratory Manual , 2nd edn. pp. 6.3–6.8 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  25. Schmitt J., Flemming H.-C. 1998; FTIR-spectroscopy in microbial and material analysis. Int Biodeterior Biodegrad 41:1–11 [CrossRef]
    [Google Scholar]
  26. Schmitt J., Nivens D., White D. C., Flemming H.-C. 1995; Changes of biofilm properties in response to sorbed substances: an FTIR-ATR study. Water Sci Technol 32:149–155
    [Google Scholar]
  27. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  28. Strunk O., Gross O., Reichel B. 11 other authors 1999 arb: a software environment for sequence data Department of Microbiology, Technische Universität München; Munich, Germany: http://www.arb-home.de/
    [Google Scholar]
  29. Vainshtein M., Hippe H., Kroppenstedt R. M. 1992; Cellular fatty acid composition of Desulfovibrio species and its use in classification of sulphate-reducing bacteria. Syst Appl Microbiol 15:554–566 [CrossRef]
    [Google Scholar]
  30. Wayne L. G., Brenner D. J., Colwell R. R. 9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  31. White D. C., Davis W. M., Nickels J. S., King J. S., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  32. Zinkevich V., Beech I. B. 2000; Isolation of intact high molecular weight chromosomal DNA from Desulfovibrio spp. Mol Biol Today 1:29–33
    [Google Scholar]
  33. Zinkevich V., Bogdarina I., Kang H., Hill M., Tapper R., Beech I. B. 1996; Characterisation of exopolymers produced by different isolates of marine sulphate-reducing bacteria. Int Biodeterior Biodegrad 37:163–172 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63118-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63118-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error