1887

Abstract

Two denitrifying strains of heterotrophic, facultatively anaerobic, marine bacteria, designated DN34 and DN33, were isolated from sea-water samples collected in Nanwan Bay, Kenting National Park, Taiwan. They were Gram-negative. Cells in late exponential to early stationary phase of growth were predominantly straight or curved rods, but Y- or V-shaped forms were also observed. They were motile by means of one to several lateral or subpolar flagella. Both strains required NaCl for growth and exhibited optimal growth at about 30 °C, pH 8 and 3 % NaCl. They were capable of anaerobic growth by carrying out denitrifying metabolism using nitrate, nitrite or nitrous oxide as terminal electron acceptors or, alternatively, by fermenting glucose, mannose, sucrose or trehalose as substrates. Anaerobic fermentative growth on glucose resulted in formation of various organic acids, including formate, lactate, acetate, pyruvate and fumarate. The major cellular fatty acids were 2-OH-14 : 0, 3-OH-14 : 0 and 16 : 0. DN34 and DN33 had DNA G+C contents of 51·7 and 51·6 mol%, respectively. Physiological characterization, together with phylogenetic analysis based on 16S rRNA gene sequence analysis, revealed that the two denitrifying strains could be accommodated in a novel genus, for which the name gen. nov. is proposed. sp. nov. is the type species, with DN34 (=BCRC 17323=JCM 12308) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63107-0
2004-11-01
2024-12-02
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542307.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63107-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L. 1984; Genus II. Photobacterium Beijerinck 1889, 401AL . In Bergey's Manual of Systematic Bacteriology vol. 1 pp  539–545 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Baumann P., Schubert R. H. W. 1984; Family II. Vibrionaceae Veron 1965, 5245AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  516–517 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  3. Baumann P., Furniss A. L., Lee J. V. 1984; Genus I. Vibrio Pacini 1854, 411AL . In Bergey's Manual of Systematic Bacteriology vol 1 pp  518–538 Edited by Krieg N. R., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  4. Felsenstein J. 1989; phylip – phylogeny inference package. Cladistics 5:164–166
    [Google Scholar]
  5. Grant M. A., Payne W. J. 1981; Denitrification by strains of Neisseria , Kingella , and Chromobacterium . Int J Syst Bacteriol 31:276–279 [CrossRef]
    [Google Scholar]
  6. Hentschel U., Schmid M., Wagner M., Fieseler L., Gernert C., Hacker J. 2001; Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola . FEMS Microbiol Ecol 35:305–312 [CrossRef]
    [Google Scholar]
  7. Hiraishi A. 1992; Direct automatic sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15:210–213 [CrossRef]
    [Google Scholar]
  8. Holt J. G., Krieg N. R., Sneath P. H., Staley J. T., Williams S. T. (editors) 1994; Group 5 facultatively anaerobic Gram-negative rods. Subgroup 2: family Vibrionaceae. In Bergey's Manual of Determinative Bacteriology , 9th edn. pp  190–194 Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Jørgensen K. S., Tiedje J. M. 1993; Survival of denitrifiers in nitrate-free, anaerobic environments. Appl Environ Microbiol 59:3297–3305
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp  21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Knowles R. 1982; Denitrification. Microbiol Rev 46:43–70
    [Google Scholar]
  12. MacDonell M. T., Colwell R. R. 1985; The phylogeny of the Vibrionaceae , and recommendation for two new genera, Listonella and Shewanella . Syst Appl Microbiol 6:171–182 [CrossRef]
    [Google Scholar]
  13. MacFaddin J. F. 1980 Biochemical Tests for Identification of Medical Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  14. Mellado E. E., Moore R. B., Nieto J. J., Ventosa A. 1996; Analysis of 16S rRNA gene sequence of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov.. Int J Syst Bacteriol 46:817–821 [CrossRef]
    [Google Scholar]
  15. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  16. Shieh W. Y., Jean W. D. 1998; Alterococcus agarolyticus , gen. nov., sp. nov. a halophilic thermophilic bacterium capable of agar degradation. Can J Microbiol 44:637–645 [CrossRef]
    [Google Scholar]
  17. Shieh W. Y., Liu C. M. 1996; Denitrification by a novel halophilic fermentative bacterium. Can J Microbiol 42:507–514 [CrossRef]
    [Google Scholar]
  18. Shieh W. Y., Chen A.-L., Chiu H.-H. 2000; Vibrio aerogenes sp. nov., a facultatively anaerobic marine bacterium that ferments glucose with gas production. Int J Syst Evol Microbiol 50:321–329 [CrossRef]
    [Google Scholar]
  19. Shieh W. Y., Chen Y.-W., Chaw S.-M., Chiu H.-H. 2003; Vibrio ruber sp. nov., a red, facultatively anaerobic, marine bacterium isolated from sea water. Int J Syst Evol Microbiol 53:479–484 [CrossRef]
    [Google Scholar]
  20. Simidu U., Tsukamoto K. 1985; Habitat segregation and biochemical activities of members of the family Vibrionaceae . Appl Environ Microbiol 50:781–790
    [Google Scholar]
  21. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Manual of Methods for General and Molecular Bacteriology pp  607–654 Edited by Gerhardt P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  22. Springer N., Ludwig W., Philipp B., Schink B. 1998; Azoarcus anaerobius sp. nov., a resorcinol-degrading, strictly anaerobic, denitrifying bacterium. Int J Syst Bacteriol 48:953–956 [CrossRef]
    [Google Scholar]
  23. Suzuki T., Muroga Y., Takahama M., Nishimura Y. 2000; Roseibium denhamense gen. nov., sp. nov. and Roseibium hamelinese sp. nov. aerobic bacteriochlorophyll-containing bacteria isolated from the east and west coasts of Australia. Int J Syst Evol Microbiol 50:2151–2156 [CrossRef]
    [Google Scholar]
  24. Thompson F. L., Hoste B., Thompson C. C., Goris J., Gomez-Gil B., Huys L., De Vos P., Swings J. 2002; Enterovibrio norvegicus gen. nov., sp. nov. isolated from the gut of turbot ( Scophthalmus maximus ) larvae: a new member of the family Vibrionaceae . Int J Syst Evol Microbiol 52:2015–2022 [CrossRef]
    [Google Scholar]
  25. Thompson F. L., Hoste B., Vandemeulebroecke K., Swings J. 2003; Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov.. Int J Syst Evol Microbiol 53:1615–1617 [CrossRef]
    [Google Scholar]
  26. Tiedje J. M. 1988; Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In Biology of Anaerobic Microorganisms pp  179–244 Edited by Zehnder A. J. B. New York: Wiley;
    [Google Scholar]
  27. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposal of Stappia stellulata gen. nov., com. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov., Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44201–210 [CrossRef]
    [Google Scholar]
  28. Urakawa H., Kita-Tsukamoto K., Steven S. E., Ohwada K., Colwell R. R. 1998; A proposal to transfer Vibrio marinus (Russel 1891) to a new genus Moritella gen. nov. as Moritella marina comb. nov. FEMS Microbiol Lett 165:373–378 [CrossRef]
    [Google Scholar]
  29. van Gent-Ruijters M. L., de Vries W., Stouthamer A. H. 1975; Influence of nitrate on fermentation pattern, molar growth yields and synthesis of cytochrome b in Propionibacterium pentosaceum . J Gen Microbiol 88:36–48 [CrossRef]
    [Google Scholar]
  30. Webster N. S., Hill R. T. 2001; The culturable microbial community of the Great Barrier Reef sponge Rhopaloeides odorabile is dominated by an α -Proteobacterium. Mar Biol 138:843–851 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.63107-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63107-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error