1887

Abstract

An alkene-degrading, sulfate-reducing bacterium, strain PF2803, was isolated from oil-polluted sediments (Fos Harbour, France). The cells were found to be Gram-negative, non-sporulating, non-motile and to have a slightly curved rod shape. Optimum growth occurred at 1 % (w/v) NaCl, pH 6·8 and 28–30 °C. Strain PF2803 oxidized alkenes (from C to C). The G+C content of the genomic DNA was 57·8 mol% (HPLC). On the basis of 16S rRNA gene sequence analyses, strain PF2803 belongs to the family ‘’ in the class ‘’, with as its closest relative (99·6 % identity). Comparative sequence analyses of the dissimilatory sulfite reductase () gene supported the affiliation of strain PF2803 to the genus . DNA–DNA hybridization with its closest taxon demonstrated 48·4 % similarity. On the basis of the results of physiological and genetic analyses, strain PF2803 is identified as a novel species of the genus , for which the name sp. nov. is proposed. The type strain is PF2803 (=DSM 16219=ATCC BAA-924).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63104-0
2004-09-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541639.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63104-0&mimeType=html&fmt=ahah

References

  1. Aeckersberg, F., Bak, F. & Widdel, F. ( 1991; ). Anaerobic oxidation of saturated hydrocarbons to CO2 by a new type of sulfate-reducing bacterium. Arch Microbiol 156, 5–14.[CrossRef]
    [Google Scholar]
  2. Aeckersberg, F., Rainey, F. A. & Widdel, F. ( 1998; ). Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions. Arch Microbiol 170, 361–369.[CrossRef]
    [Google Scholar]
  3. Buck, J. D. ( 1982; ). Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl Environ Microbiol 44, 992–993.
    [Google Scholar]
  4. Cline, J. D. ( 1969; ). Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14, 454–458.[CrossRef]
    [Google Scholar]
  5. Cravo-Laureau, C., Matheron, R., Cayol, J.-L., Joulian, C. & Hirschler-Réa, A. ( 2004; ). Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int J Syst Evol Microbiol 54, 77–83.[CrossRef]
    [Google Scholar]
  6. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  7. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  8. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  9. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  10. Pfennig, N. & Trüper, H. G. ( 1981; ). Isolation of members of the families Chromatiaceae and Chlorobiaceae. In The Prokaryotes, vol. 1, pp. 279–289. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  11. Pfennig, N., Widdel, F. & Trüper, H. G. ( 1981; ). The dissimilatory sulfate-reducing bacteria. In The Prokaryotes, vol. 1, pp. 926–940. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer.
  12. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannash, H. W. & Widdel, F. ( 1994; ). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–457.[CrossRef]
    [Google Scholar]
  13. So, C. M. & Young, L. Y. ( 1999; ). Isolation and characterization of a sulfate-reducing bacterium that anaerobically degrades alkanes. Appl Environ Microbiol 65, 2969–2976.
    [Google Scholar]
  14. Spormann, A. M. & Widdel, F. ( 2000; ). Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11, 85–105.[CrossRef]
    [Google Scholar]
  15. Tabatabai, M. A. ( 1974; ). Determination of sulfate in water samples. Sulphur Instit J 10, 11–13.
    [Google Scholar]
  16. Vogel, A. I. ( 1961; ). A Text Book of Quantitative Inorganic Analysis. London: Longman.
  17. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  18. Widdel, F. & Bak, F. ( 1992; ). Gram-negative mesophilic sulfate-reducing bacteria. In The Prokaryotes, vol. 4, pp. 3352–3378. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63104-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63104-0
Loading

Data & Media loading...

Supplements

vol. , part 5, pp. 1639 - 1642

Phase-contrast photomicrograph of cells of strain PF2803 . Bar, 10 µm.



IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error