1887

Abstract

The current classification of non-pigmented and late-pigmenting rapidly growing mycobacteria (RGM) capable of producing disease in humans and animals consists primarily of three groups, the group, the group and the group. Since 1995, eight emerging species have been tentatively assigned to these groups on the basis of their phenotypic characters and 16S rRNA gene sequence, resulting in confusing taxonomy. In order to assess further taxonomic relationships among RGM, complete sequences of the 16S rRNA gene (1483–1489 bp), (3486–3495 bp) and (1041–1056 bp) and partial sequences of (420 bp) and (441 bp) were determined in 19 species of RGM. Phylogenetic trees based upon each gene sequence, those based on the combined dataset of the five gene sequences and one based on the combined dataset of the and gene sequences were then compared using the neighbour-joining, maximum-parsimony and maximum-likelihood methods after using the incongruence length difference test. Combined datasets of the five gene sequences comprising nearly 7000 bp and of the + gene sequences comprising nearly 4600 bp distinguished six phylogenetic groups, the group, the group, the group, the group, the group and the group, respectively comprising four, three, eight, one, one and two species. The two protein-encoding genes and improved meaningfully the bootstrap values at the nodes of the different groups. The species , and formed new groups separated from the , and groups, respectively. The group was well delineated, in contrast to the and groups. For phylogenetic organizations derived from the and gene sequences, the bootstrap values at the nodes of a few clusters were <70 %. In contrast, phylogenetic organizations obtained from the 16S rRNA, and genes were globally similar to that inferred from combined datasets, indicating that the and genes appeared to be useful tools in addition to the 16S rRNA gene for the investigation of evolutionary relationships among RGM species. Moreover, gene sequence analysis yielded bootstrap values higher than those observed with and 16S rRNA genes. Also, molecular signatures in the and 16S rRNA genes of the group showed that it was a sister group of the group. In this group, ATCC 49650 was clearly distinguished from ATCC 49649 with regard to analysis of the five gene sequences. This was in agreement with phenotypic and biochemical characteristics and suggested that these strains are representatives of two closely related, albeit distinct species.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63094-0
2004-11-01
2019-10-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542095.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63094-0&mimeType=html&fmt=ahah

References

  1. Adékambi, T., Colson, P. & Drancourt, M. ( 2003; ). rpoB-based identification of nonpigmented and late-pigmenting rapidly growing mycobacteria. J Clin Microbiol 41, 5699–5708.[CrossRef]
    [Google Scholar]
  2. Averof, M., Rokas, A., Wolfe, K. H. & Sharp, P. M. ( 2000; ). Evidence for a high frequency of simultaneous double-nucleotide substitutions. Science 287, 1283–1286.[CrossRef]
    [Google Scholar]
  3. Blackwood, K. S., He, C., Gunton, J., Turenne, C. Y., Wolfe, J. & Kabani, A. M. ( 2000; ). Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol 38, 2846–2852.
    [Google Scholar]
  4. Bromham, L., Penny, D., Rambaut, A. & Hendy, M. D. ( 2000; ). The power of relative rates tests depends on the data. J Mol Evol 50, 296–301.
    [Google Scholar]
  5. Brown, B. A., Springer, B., Steingrube, V. A. & 10 other authors ( 1999; ). Mycobacterium wolinskyi sp. nov. and Mycobacterium goodii sp. nov., two new rapidly growing species related to Mycobacterium smegmatis and associated with human wound infections: a cooperative study from the International Working Group on Mycobacterial Taxonomy. Int J Syst Bacteriol 49, 1493–1511.[CrossRef]
    [Google Scholar]
  6. Brown-Elliott, B. A. & Wallace, R. J., Jr ( 2002; ). Clinical and taxonomic status of pathogenic nonpigmented or late-pigmenting rapidly growing mycobacteria. Clin Microbiol Rev 15, 716–746.[CrossRef]
    [Google Scholar]
  7. Brunello, F., Ligozzi, M., Cristelli, E., Bonora, S., Tortoli, E. & Fontana, R. ( 2001; ). Identification of 54 mycobacterial species by PCR-restriction fragment length polymorphism analysis of the hsp65 gene. J Clin Microbiol 39, 2799–2806.[CrossRef]
    [Google Scholar]
  8. Bull, J. J., Huelsenbeck, J., Cunningham, C. W., Swofford, D. L. & Wadell, P. J. ( 1993; ). Partitioning and combining data in phylogenetic analysis. Syst Biol 42, 384–397.[CrossRef]
    [Google Scholar]
  9. Chamoiseau, G. ( 1979; ). Etiology of farcy in African bovines: nomenclatures of the causal organisms Mycobacterium farcinogenes Chamoiseau and Mycobacterium senegalense (Chamoiseau) comb. nov. Int J Syst Bacteriol 29, 407–410.[CrossRef]
    [Google Scholar]
  10. Cummings, M. P., Otto, S. P. & Wakeley, J. ( 1995; ). Sampling properties of DNA sequence data in phylogenetic analysis. Mol Biol Evol 12, 814–822.
    [Google Scholar]
  11. Cunningham, C. W. ( 1997; ). Can three incongruence tests predict when data should be combined? Mol Biol Evol 14, 733–740.[CrossRef]
    [Google Scholar]
  12. Darlu, P. & Lecointre, G. ( 2002; ). When does the incongruence length difference test fail? Mol Biol Evol 19, 432–437.[CrossRef]
    [Google Scholar]
  13. Domenech, P., Menendez, M. C. & Garcia, M. J. ( 1994; ). Restriction fragment length polymorphisms of 16S rRNA genes in the differentiation of fast-growing mycobacterial species. FEMS Microbiol Lett 116, 19–24.[CrossRef]
    [Google Scholar]
  14. Domenech, P., Jimenez, M. S., Menendez, M. C., Bull, T. J., Samper, S., Manrique, A. & Garcia, M. J. ( 1997; ). Mycobacterium mageritense sp. nov. Int J Syst Bacteriol 47, 535–540.[CrossRef]
    [Google Scholar]
  15. Drancourt, M., Bollet, C., Carlioz, A., Martelin, R., Gayral, J. P. & Raoult, D. ( 2000; ). 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J Clin Microbiol 38, 3623–3630.
    [Google Scholar]
  16. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  17. Gatesy, J. & Arctander, P. ( 2000; ). Hidden morphological support for the phylogenetic placement of Pseudoryx nghetinhensis with bovine bovids: a combined analysis of gross anatomical evidence and DNA sequences from five genes. Syst Biol 49, 515–538.[CrossRef]
    [Google Scholar]
  18. Gatesy, J., O'Grady, P. & Baker, R. ( 1999; ). Corroboration among data sets in simultaneous analysis: hidden support for phylogenetic relationships among higher level artiodactyls taxa. Cladistics 15, 271–313.[CrossRef]
    [Google Scholar]
  19. Gaunt, M. W., Turner, S. L., Rigottier-Gois, L., Lloyd-Macgilp, S. A. & Young, J. P. W. ( 2001; ). Phylogenies of atpD and recA support the small subunit rRNA-based classification of rhizobia. Int J Syst Evol Microbiol 51, 2037–2048.[CrossRef]
    [Google Scholar]
  20. Hamid, M. E., Roth, A., Landt, O., Kroppenstedt, R. M., Goodfellow, M. & Mauch, H. ( 2002; ). Differentiation between Mycobacterium farcinogenes and Mycobacterium senegalense strains based on 16S-23S ribosomal DNA internal transcribed spacer sequences. J Clin Microbiol 40, 707–711.[CrossRef]
    [Google Scholar]
  21. Jang, S. S. & Hirsh, D. C. ( 2002; ). Rapidly growing members of the genus Mycobacterium affecting dogs and cats. J Am Anim Hosp Assoc 38, 217–220.[CrossRef]
    [Google Scholar]
  22. Kim, B. J., Lee, S. H., Lyu, M. A., Kim, S. J., Bai, G. H., Chae, G. T., Kim, E. C., Cha, C. Y. & Kook, Y. H. ( 1999; ). Identification of mycobacterial species by comparative sequence analysis of the RNA polymerase gene (rpoB). J Clin Microbiol 37, 1714–1720.
    [Google Scholar]
  23. Kirschner, P., Kiekenbeck, M., Meissner, D., Wolters, J. & Böttger, E. C. ( 1992; ). Genetic heterogeneity within Mycobacterium fortuitum complex species: genotypic criteria for identification. J Clin Microbiol 30, 2772–2775.
    [Google Scholar]
  24. Kumar, S., Tamura, K., Jakobsen, I. B. & Nei, M. ( 2001; ). mega2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244–1245.[CrossRef]
    [Google Scholar]
  25. Lanéelle, M. A., Silve, G., Lopez-Marin, L. M. & Daffe, M. ( 1996; ). Structures of the glycolipid antigens of members of the third biovariant complex of Mycobacterium fortuitum. Eur J Biochem 15, 270–279.
    [Google Scholar]
  26. Lévy-Frébault, V., Grimont, F., Grimont, P. A. D. & David, H. L. ( 1986; ). Deoxyribonucleic acid relatedness study of the Mycobacterium fortuitum-Mycobacterium chelonae complex. Int J Syst Bacteriol 36, 458–460.[CrossRef]
    [Google Scholar]
  27. Lopez-Marin, L. M., Laneelle, M. A., Prome, D. & Daffe, M. ( 1993; ). Structures of the glycopeptidolipid antigens of two animal pathogens: Mycobacterium senegalense and Mycobacterium porcinum. Eur J Biochem 215, 859–866.[CrossRef]
    [Google Scholar]
  28. Lorenz, M. G. & Sikorski, J. ( 2000; ). The potential for intraspecific horizontal gene exchange by natural genetic transformation: sexual isolation among genomovars of Pseudomonas stutzeri. Microbiology 146, 3081–3090.
    [Google Scholar]
  29. Muñoz, M., Julian, E., Garcia-Barcelo, M., Ausina, V. & Luquin, M. ( 1997; ). Easy differentiation of Mycobacterium mucogenicum from other species of the Mycobacterium fortuitum complex by thin-layer and gas chromatography of fatty esters and alcohols. J Chromatogr B Biomed Sci Appl 689, 341–347.[CrossRef]
    [Google Scholar]
  30. Muñoz, M., Raynaud, C., Lanéelle, M.-A., Julián, E., López Marín, L. M., Silve, G., Ausina, V., Daffé, M. & Luquin, M. ( 1998; ). Seroreactive species-specific lipooligosaccharides of Mycobacterium mucogenicum sp. nov. (formerly Mycobacterium chelonae-like organisms): identification and chemical characterization. Microbiology 144, 137–148.[CrossRef]
    [Google Scholar]
  31. Pfyffer, G. E., Brown-Elliot, B. A. & Wallace, R. J., Jr ( 2003; ). Mycobacterium: general characteristics, isolation, and staining procedures. In Manual of Clinical Microbiology, 8th edn, pp. 532–559. Edited by P. R. Murray, E. J. Baron, J. H. Jorgensen, M. A. Pfaller & R. H. Yolken. Washington, DC: American Society for Microbiology.
  32. Ridell, M. & Goodfellow, M. ( 1983; ). Numerical classification of Mycobacterium farcinogenes, Mycobacterium senegalense and related taxa. J Gen Microbiol 129, 599–611.
    [Google Scholar]
  33. Rinquet, H., Akoua-Koffi, C., Honore, S., Varnerot, A., Vincent, V., Berche, P., Gaillard, J. L. & Pierre-Audigier, C. ( 1999; ). hsp65 sequencing for identification of rapidly growing mycobacteria. J Clin Microbiol 37, 852–857.
    [Google Scholar]
  34. Roth, A., Reischl, U., Streubel, A., Naumann, L., Kroppenstedt, R. M., Habicht, M., Fischer, M. & Mauch, H. ( 2000; ). Novel diagnostic algorithm for identification of mycobacteria using genus-specific amplification of the 16S-23S rRNA gene spacer and restriction endonucleases. J Clin Microbiol 38, 1094–1104.
    [Google Scholar]
  35. Schinsky, M. F., McNeil, M. M., Whitney, A. M., Steigerwalt, A. G., Lasker, B. A., Floyd, M. M., Hogg, G. G., Brenner, D. J. & Brown, J. M. ( 2000; ). Mycobacterium septicum sp. nov., a new rapidly growing species associated with catheter-related bacteraemia. Int J Syst Evol Microbiol 50, 575–581.[CrossRef]
    [Google Scholar]
  36. Schinsky, M. F., Morey, R. E., Steigerwalt, G. A. & 9 other authors ( 2004; ). Taxonomic variation in the Mycobacterium fortuitum third biovariant complex: description of Mycobacterium boenickei sp. nov., Mycobacterium houstonense sp. nov., Mycobacterium neworleansense sp. nov. and Mycobacterium brisbanense sp. nov. and recognition of Mycobacterium porcinum from human clinical isolates. Int J Syst Evol Microbiol 54, 1653–1667.[CrossRef]
    [Google Scholar]
  37. Springer, B., Böttger, E. C., Kirschner, P. & Wallace, R. J., Jr ( 1995; ). Phylogeny of the Mycobacterium chelonae-like organism based on partial sequencing of 16S rRNA gene and proposal of Mycobacterium mucogenicum sp. nov. Int J Syst Bacteriol 45, 262–267.[CrossRef]
    [Google Scholar]
  38. Steingrube, V. A., Gibson, J. L., Brown, B. A., Zhang, Y., Wilson, R. W., Rajagonpalan, M. & Wallace, R. J., Jr ( 1995; ). PCR amplification and restriction endonuclease analysis of a 65-kilodalton heat shock protein gene sequence for taxonomic separation of rapidly growing mycobacteria. J Clin Microbiol 33, 149–153.
    [Google Scholar]
  39. Swofford, D. L. ( 1998; ). paup*. Phylogenetic analysis using parsimony (*and other methods), version 4. Sunderland, MA: Sinauer Associates.
  40. Telenti, A., Marchesi, F., Balz, M., Bally, F., Böttger, E. & Bodmer, T. ( 1993; ). Rapidly growing mycobacteria to the species level by polymerase chain reaction and restriction enzyme analysis. J Clin Microbiol 31, 175–178.
    [Google Scholar]
  41. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25, 4876–4882.[CrossRef]
    [Google Scholar]
  42. Tortoli, E. ( 2003; ). Impact of genotypic studies on mycobacterial taxonomy: the new mycobacteria of the 1990s. Clin Microbiol Rev 16, 319–354.[CrossRef]
    [Google Scholar]
  43. Tsukamura, M. & Ichiyama, S. ( 1986; ). Numerical classification of rapidly growing nonphotochromogenic mycobacteria. Microbiol Immunol 30, 863–882.[CrossRef]
    [Google Scholar]
  44. Wallace, R. J., Jr, Silcox, V. A., Tsukamura, M., Brown, B. A., Kilburn, J. O., Butler, W. R. & Onyi, G. O. ( 1993; ). Clinical significance, biochemical features, and susceptibility patterns of sporadic isolates of the Mycobacterium chelonae-like organism. J Clin Microbiol 31, 3231–3239.
    [Google Scholar]
  45. Wallace, R. J., Jr, Brown-Elliot, B. A., Hall, L. & 9 other authors ( 2002; ). Clinical and laboratory features of Mycobacterium mageritense. J Clin Microbiol 40, 2930–2935.[CrossRef]
    [Google Scholar]
  46. Wilson, R. W., Steingrube, V. A., Böttger, E. C. & 11 other authors ( 2001; ). Mycobacterium immunogenum sp. nov., a novel species related to Mycobacterium abscessus and associated with clinical disease, pseudo-outbreaks and contaminated metalworking fluids: an international cooperative study on mycobacterial taxonomy. Int J Syst Evol Microbiol 51, 1751–1764.[CrossRef]
    [Google Scholar]
  47. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  48. Youssef, S., Archambault, M., Parker, W. & Yager, J. ( 2002; ). Pyogranulomatous panniculitis in a cat associated with infection by the Mycobacterium fortuitum/peregrinum group. Can Vet J 43, 285–287.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63094-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63094-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 2095 - 2105

Primers used in the sequencing of the 16S rRNA, , and genes in pathogenic rapidly growing mycobacteria (RGM).

Primers used in the sequencing of the entire gene in pathogenic RGM.

[Single PDF file](23 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error