An updated view of kinetoplastid phylogeny using environmental sequences and a closer outgroup: proposal for a new classification of the class Kinetoplastea Free

Abstract

Given their ecological and medical importance, the classification of the kinetoplastid protists (class Kinetoplastea) has attracted much scientific attention for a long time. Morphology-based taxonomic schemes distinguished two major kinetoplastid groups: the strictly parasitic, uniflagellate trypanosomatids and the biflagellate bodonids. Molecular phylogenetic analyses based on 18S rRNA sequence comparison suggested that the trypanosomatids emerged from within the bodonids. However, these analyses revealed a huge evolutionary distance between the kinetoplastids and their closest relatives (euglenids and diplonemids) that makes very difficult the correct inference of the phylogenetic relationships between the different kinetoplastid groups. Using direct PCR amplification of 18S rRNA genes from hydrothermal vent samples, several new kinetoplastid-like sequences have been reported recently. Three of them emerge robustly at the base of the kinetoplastids, breaking the long branch leading to the euglenids and diplonemids. One of these sequences belongs to a close relative of (a fish parasite) and of the ‘’-like endosymbiont of spp. amoebae. The authors have studied the reliability of their basal position and used all these slow-evolving basal-emerging sequences as a close outgroup to analyse the phylogeny of the apical kinetoplastids. They thus find a much more stable and resolved kinetoplastid phylogeny, which supports the monophyly of groups that very often emerged as polyphyletic in the trees rooted using the traditional, distant outgroup sequences. A new classification of the class Kinetoplastea is proposed based on the results of the phylogenetic analysis presented. This class is now subdivided into two new subclasses, Prokinetoplastina (accommodating the basal species and ‘’) and Metakinetoplastina (containing the Trypanosomatida together with three additional new orders: Eubodonida, Parabodonida and Neobodonida). The classification of the species formerly included in the genus is also revised, with the amendment of this genus and the genus and the creation of a new genus, .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.63081-0
2004-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/5/ijs541861.html?itemId=/content/journal/ijsem/10.1099/ijs.0.63081-0&mimeType=html&fmt=ahah

References

  1. Aguinaldo A. M., Turbeville J. M., Linford L. S., Rivera M. C., Garey J. R., Raff R. A., Lake J. A. 1997; Evidence for a clade of nematodes, arthropods and other moulting animals. Nature 387:489–493 [CrossRef]
    [Google Scholar]
  2. Alfaro M. E., Zoller S., Lutzoni F. 2003; Bayes or bootstrap? A simulation study comparing the performance of Bayesian Markov chain Monte Carlo sampling and bootstrapping in assessing phylogenetic confidence. Mol Biol Evol 20:255–266 [CrossRef]
    [Google Scholar]
  3. Amaral Zettler L. A., Gomez F., Zettler E., Keenan B. G., Amils R., Sogin M. L. 2002; Microbiology: eukaryotic diversity in Spain's River of Fire. Nature 417:137 [CrossRef]
    [Google Scholar]
  4. Arndt H., Dietrich D., Auer B., Cleven E., Grafenham T., Weitere M., Mylnikov A. P. 2000; Functional diversity of heterotrophic flagellates in aquatic ecosystems. In The Flagellates pp  240–268 Edited by Leadbeater B. S. C., Green J. C. London: Taylor & Francis;
    [Google Scholar]
  5. Atkins M. S., Teske A. P., Anderson O. R. 2000; A survey of flagellate diversity at four deep-sea hydrothermal vents in the Eastern Pacific Ocean using structural and molecular approaches. J Eukaryot Microbiol 47:400–411 [CrossRef]
    [Google Scholar]
  6. Blom D., de Haan A., van den Berg M., Sloof P., Jirků M., Lukeš J., Benne R. 1998; RNA editing in the free-living bodonid Bodo saltans . Nucleic Acids Res 26:1205–1213 [CrossRef]
    [Google Scholar]
  7. Breunig A., König H., Brugerolle G., Vickerman K., Hertel H. 1993; Isolation and ultrastructural features of a new strain of Dimastigella trypaniformis Sandon 1928 (Bodonina, Kinetoplastida) and comparison with a previously isolated strain. Eur J Protistol 29:416–424 [CrossRef]
    [Google Scholar]
  8. Brooker B. E. 1971; Fine structure of Bodo saltans and Bodo caudatus (Zoomastigophora, Protozoa) and their affinities with the Trypanosomatidae. Bull Brit Mus (Nat Hist 2289–102
  9. Brugerolle G. 1985; Des trichocystes chez les bodonides, un caractère phylogénétique supplémentaire entre Kinetoplastida et Euglenida. Protistologica 21:339–348
    [Google Scholar]
  10. Brugerolle G., Mignot J.-P. 1979; Distribution et organisation de l'ADN dans le complex kinétoplaste-mitochondrie chez un Bodonidé, protozoaire kinétoplastidé; variations au cours du cycle cellulaire. Biol Cell 35:111–114
    [Google Scholar]
  11. Burzell L. A. 1975; Fine structure of Bodo curvifilus Griessmann (Kinetoplastida: Bodonidae). J Protozool 22:35–39 [CrossRef]
    [Google Scholar]
  12. Busse I., Preisfeld A. 2002a; Phylogenetic position of Rhynchopus sp. and Diplonema ambulator as indicated by analyses of euglenozoan small subunit ribosomal DNA. Gene 284:83–91 [CrossRef]
    [Google Scholar]
  13. Busse I., Preisfeld A. 2002b; Unusually expanded SSU ribosomal DNA of primary osmotrophic euglenids: molecular evolution and phylogenetic inference. J Mol Evol 55:757–767 [CrossRef]
    [Google Scholar]
  14. Callahan H. A., Litaker R. W., Noga E. J. 2002; Molecular taxonomy of the suborder Bodonina (Order Kinetoplastida), including the important fish parasite, Ichthyobodo necator . J Eukaryot Microbiol 49:119–128 [CrossRef]
    [Google Scholar]
  15. Cavalier-Smith T. 1981; Eukaryote kingdoms: seven or nine?. Biosystems 14:461–481 [CrossRef]
    [Google Scholar]
  16. Cavalier-Smith T. 1997; Cell and genome coevolution: facultative anaerobiosis, glycosomes and kinetoplastan RNA editing. Trends Genet 13:6–9 [CrossRef]
    [Google Scholar]
  17. Dawson S. C., Pace N. R. 2002; Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329 [CrossRef]
    [Google Scholar]
  18. Doležel D., Jirků M., Maslov D. A., Lukeš J. 2000; Phylogeny of the bodonid flagellates (Kinetoplastida) based on small-subunit rRNA gene sequences. Int J Syst Evol Microbiol 50:1943–1951
    [Google Scholar]
  19. Douady C. J., Delsuc F., Boucher Y., Doolittle W. F., Douzery E. J. 2003; Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Mol Biol Evol 20:248–254 [CrossRef]
    [Google Scholar]
  20. Dyková I., Fiala I., Lom J., Lukeš J. 2003; Perkinsiella amoebae -like endosymbionts of Neoparamoeba spp., relatives of the kinetoplastid Ichthyobodo . Eur J Protistol 39:37–52 [CrossRef]
    [Google Scholar]
  21. Edgcomb V. P., Kysela D. T., Teske A., de Vera Gomez A., Sogin M. L. 2002; Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662 [CrossRef]
    [Google Scholar]
  22. Eyden B. P. 1977; Morphology and ultrastructure of Bodo designis Skuja 1948. Protistologica 13:169–179
    [Google Scholar]
  23. Foissner W. 1991; Diversity and ecology of soil flagellates. In The Biology of Free-living Heterotrophic Flagellates pp  93–112 Edited by Patterson D. J., Larsen J. New York: Clarendon Press;
    [Google Scholar]
  24. Frolov A. O., Malysheva M. N. 2002; Ultrastructure of the flagellate Cruzella marina (Kinetoplastidea). Tsitologiia 44:477–484 (in Russian
    [Google Scholar]
  25. Hannaert V., Saavedra E., Duffieux F., Szikora J. P., Rigden D. J., Michels P. A., Opperdoes F. R. 2003; Plant-like traits associated with metabolism of Trypanosoma parasites. Proc Natl Acad Sci U S A 100:1067–1071 [CrossRef]
    [Google Scholar]
  26. Hendy M. D., Penny D. 1989; A framework for the quantitative study of evolutionary trees. Syst Zool 38:297–309 [CrossRef]
    [Google Scholar]
  27. Hollande A. 1952 Ordre des Bodonides (Bodonidea ord. nov.) In Traité de Zoologie pp  669–693 Edited by Grassé P. P. Paris: Masson & Cie;
    [Google Scholar]
  28. Honigberg B. M. 1963; A contribution to systematics of the non-pigmented flagellates. In Progress in Protozoology p– 68 Edited by Ludvik J., Lom J., Vavra J. New York: Academic Press;
    [Google Scholar]
  29. Huelsenbeck J. P., Ronquist F. 2003 MrBayes: a program for the Bayesian inference of phylogeny Uppsala: Uppsala University;
    [Google Scholar]
  30. Hughes A. L., Piontkivska H. 2003; Phylogeny of Trypanosomatidae and Bodonidae (Kinetoplastida) based on 18S rRNA: evidence for paraphyly of Trypanosoma and six other genera. Mol Biol Evol 20:644–652 [CrossRef]
    [Google Scholar]
  31. Joyon L., Lom J. 1969; Etude cytologique, systématique et pathologique d' Ichthyobodo necator (Henneguy 1883) Pinto 1928 (Zooflagellé. J Protozool 6:703–719
    [Google Scholar]
  32. Klebs G. 1892; Flagellatenstudien. Z Wiss Zool 55:265
    [Google Scholar]
  33. Landweber L. F., Gilbert W. 1994; Phylogenetic analysis of RNA editing: a primitive genetic phenomenon. Proc Natl Acad Sci U S A 91:918–921 [CrossRef]
    [Google Scholar]
  34. López-García P., Rodríguez-Valera F., Pedrós-Alió C., Moreira D. 2001; Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409:603–607 [CrossRef]
    [Google Scholar]
  35. López-García P., Philippe H., Gaill F., Moreira D. 2003; Autochthonous eukaryotic diversity in hydrothermal sediment and experimental micro-colonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702 [CrossRef]
    [Google Scholar]
  36. Lukeš J., Jirků M., Doležel D., Kral'ova I., Hollar L., Maslov D. A. 1997; Analysis of ribosomal RNA genes suggests that trypanosomes are monophyletic. J Mol Evol 44:521–527 [CrossRef]
    [Google Scholar]
  37. Lukeš J., Jirků M., Avliyakulov N., Benada O. 1998; Pankinetoplast DNA structure in a primitive bodonid flagellate, Cryptobia helicis . EMBO J 17:838–846 [CrossRef]
    [Google Scholar]
  38. Lukeš J., Guilbride D. L., Votypka J., Zikova A., Benne R., Englund P. T. 2002; Kinetoplast DNA network: evolution of an improbable structure. Eukaryot Cell 1:495–502 [CrossRef]
    [Google Scholar]
  39. Maslov D. A., Avila H. A., Lake J. A., Simpson L. 1994; Evolution of RNA editing in kinetoplastid protozoa. Nature 368:345–348 [CrossRef]
    [Google Scholar]
  40. Maslov D. A., Yasuhira S., Simpson L. 1999; Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences. Protist 150:33–42 [CrossRef]
    [Google Scholar]
  41. Moon-van der Staay S. Y., De Wachter R., Vaulot D. 2001; Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409:607–610 [CrossRef]
    [Google Scholar]
  42. Moreira D., López-García P., Rodríguez-Valera F. 2001; New insights into the phylogenetic position of diplonemids: G+C content bias, differences of evolutionary rate, and a new environmental sequence. Int J Syst Evol Microbiol 51:2211–2219 [CrossRef]
    [Google Scholar]
  43. Philippe H. 1993; must, a computer package of Management Utilities for Sequences and Trees. Nucleic Acids Res 21:5264–5272 [CrossRef]
    [Google Scholar]
  44. Philippe H., Adoutte A. 1998; The molecular phylogeny of Eukaryota: solid facts and uncertainties. In Evolutionary Relationships among Protozoa pp  25–56 Edited by Coombs G., Vickerman K., Sleigh M., Warren A. London: Chapman & Hall;
    [Google Scholar]
  45. Philippe H., Germot A. 2000; Phylogeny of eukaryotes based on ribosomal RNA: long-branch attraction and models of sequence evolution. Mol Biol Evol 17:830–834 [CrossRef]
    [Google Scholar]
  46. Philippe H., Laurent J. 1998; How good are deep phylogenetic trees?. Curr Opin Genet Dev 8:616–623 [CrossRef]
    [Google Scholar]
  47. Philippe H., Sörhannus U., Baroin A., Perasso R., Gasse F., Adoutte A. 1994; Comparison of molecular and paleontological data in diatoms suggests a major gap in the fossil record. J Evol Biol 7:247–265 [CrossRef]
    [Google Scholar]
  48. Philippe H., Lopez P., Brinkmann H., Budin K., Germot A., Laurent J., Moreira D., Muller M., Le Guyader H. 2000; Early-branching or fast-evolving eukaryotes? An answer based on slowly evolving positions. Proc R Soc Lond B Biol Sci 267:1213–1221 [CrossRef]
    [Google Scholar]
  49. Posada D., Crandall K. A. 1998; modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818 [CrossRef]
    [Google Scholar]
  50. Preisfeld A., Busse I., Klingberg M., Talke S., Ruppel H. G. 2001; Phylogenetic position and inter-relationships of the osmotrophic euglenids based on SSU rDNA data, with emphasis on the Rhabdomonadales (Euglenozoa. Int J Syst Evol Microbiol 51:751–758 [CrossRef]
    [Google Scholar]
  51. Shimodaira H. 2002; An approximately unbiased test of phylogenetic tree selection. Syst Biol 51:492–508 [CrossRef]
    [Google Scholar]
  52. Shimodaira H., Hasegawa M. 2001; consel: for assessing the confidence of phylogenetic tree selection. Bioinformatics 17:1246–1247 [CrossRef]
    [Google Scholar]
  53. Simpson A. G., Roger A. J. 2004; Protein phylogenies robustly resolve the deep-level relationships within Euglenozoa. Mol Phylogenet Evol 30:201–212 [CrossRef]
    [Google Scholar]
  54. Simpson A. G., Lukeš J., Roger A. J. 2002; The evolutionary history of kinetoplastids and their kinetoplasts. Mol Biol Evol 19:2071–2083 [CrossRef]
    [Google Scholar]
  55. Simpson L., Thiemann O. H., Savill N. J., Alfonzo J. D., Maslov D. A. 2000; Evolution of RNA editing in trypanosome mitochondria. Proc Natl Acad Sci U S A 97:6986–6993 [CrossRef]
    [Google Scholar]
  56. Skuja H. 1939; Beitrag sur Algenflora Lettlands II. Acta Horti Bot Univ Latv XI/XII:41–169
    [Google Scholar]
  57. Skuja H. 1948; Taxonomie des Phytoplanktons einiger Seen in Upplands, Schweden. Symb Bot Ups 9:1–399
    [Google Scholar]
  58. Stein F. R. 1878 Der Organismus der Infusionsthiere III. Der Organismus der Flagellaten;1 Leipzig: Engelmann;
    [Google Scholar]
  59. Stoeck T., Epstein S. 2003; Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl Environ Microbiol 69:2657–2663 [CrossRef]
    [Google Scholar]
  60. Štolba P., Jirků M., Lukeš J. 2001; Polykinetoplast DNA structure in Dimastigella trypaniformis and Dimastigella mimosa (Kinetoplastida. Mol Biochem Parasitol 113:323–326 [CrossRef]
    [Google Scholar]
  61. Suzuki Y., Glazko G. V., Nei M. 2002; Overcredibility of molecular phylogenies obtained by Bayesian phylogenetics. Proc Natl Acad Sci U S A 99:16138–16143 [CrossRef]
    [Google Scholar]
  62. Swale E. M. F. 1973; A study of the colourless flagellate Rhynchomonas nasuta (Stokes) Klebs. Biol J Linn Soc 5:255–264 [CrossRef]
    [Google Scholar]
  63. Swofford D. L. 2000 paup*, phylogenetic analysis using parsimony (*and other methods) , version 4 Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  64. Vickerman K. 1976; The diversity of the kinetoplastid flagellates. In Biology of the Kinetoplastida pp  1–34 Edited by Lumsden W. H. R., Evans D. A. London: Academic Press;
    [Google Scholar]
  65. Vickerman K. 1978; The free-living trypanoplasms: descriptions of three species of the genus Procryptobia n.g., and redescription of Dimastigella trypaniformis Sandon, with notes on their relevance to the microscopical diagnosis of disease in man and animals. Trans Am Microsc Soc 97:485–502 [CrossRef]
    [Google Scholar]
  66. Vickerman K. 1990; Phylum Zoomastigina, class Kinetoplastida. In Handbook of Protoctista pp  215–238 Edited by Margulis L., Corliss J. O., Melkonian M., Chapman D. J. Boston: Jones & Bartlett;
    [Google Scholar]
  67. Vickerman K. 2000 Order Kinetoplastea. In The Illustrated Guide to the Protozoa , pp. 1159–1185 Edited by Lee J. J., Leedale G. F., Bradbury P. Lawrence, KS: Allen Press;
    [Google Scholar]
  68. Woo P. T. K. 1987; Cryptobia and cryptobiasis in fishes. Adv Parasitol 26:199–237
    [Google Scholar]
  69. Zhukov B. F. 1991; The diversity of bodonids. In The Biology of Free-living Heterotrophic Flagellates pp  177–184 Edited by Patterson D. J., Larsen J. New York: Clarendon Press;
    [Google Scholar]
  70. Zíková A., Vancová M., Jirků M., Lukeš J. 2003; Cruzella marina (Bodonina, Kinetoplastida): non-catenated structure of poly-kinetoplast DNA. Exp Parasitol 104:159–161 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.63081-0
Loading
/content/journal/ijsem/10.1099/ijs.0.63081-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed