1887

Abstract

A facultatively anaerobic, marine spirochaete, designated strain SIP1, was isolated from interstitial water from a cyanobacteria-containing microbial mat. Cells of strain SIP1 were 0.3–0.4×10–12 μm in size, helical with a body pitch of approximately 1.4 μm and motile by means of two to four periplasmic flagella (one, or occasionally two, being inserted near each end of the cell). Cells were catalase-negative and used a variety of monosaccharides and disaccharides and pectin as energy sources, growing especially well on cellobiose. Neither organic acids nor amino acids were utilized as energy sources. One or more amino acids in tryptone and one or more components of yeast extract were required for growth. Growth was observed at 9–37 °C (optimally at or near 37 °C), at initial pH 5–8 (optimally at initial pH 7.5) and in media prepared with 20–100 % (v/v) seawater (optimally at 60–80 %) or 0.10–1.00 M NaCl (optimally at 0.30–0.40 M). The products of cellobiose fermentation were acetate, ethanol, CO, H and small amounts of formate. Aerated cultures performed incomplete oxidation of cellobiose to acetate (and, presumably, CO) plus small amounts of ethanol and formate, but exhibited a that was only slightly greater than that of cellobiose-fermenting anoxic cultures. The G+C content of the genomic DNA of strain SIP1 was 41.4 mol%, the lowest among known spirochaetas. On the basis of its 16S rRNA gene sequence, strain SIP1 was grouped among other members of the genus , but it bore only 89 % similarity with respect to its closest known relatives, and , two marine obligate anaerobes. On the basis of its phenotypic properties and phylogenetic position, strain SIP1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is SIP1 (=ATCC BAA-1285 =DSM 17781).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/001263-0
2008-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2762.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/001263-0&mimeType=html&fmt=ahah

References

  1. Aksinova, H. Y., Rainey, F. A., Janssen, P. H., Zavarzin, G. A. & Morgan, H. W.(1992).Spirochaeta thermophila sp. nov., an obligately anaerobic, polysaccharolytic, extremely thermophilic bacterium. Int J Syst Bacteriol 42, 175–177.[CrossRef] [Google Scholar]
  2. Breznak, J. A. & Canale-Parola, E.(1969).Spirochaeta aurantia, a pigmented, facultatively anaerobic spirochete. J Bacteriol 97, 386–395. [Google Scholar]
  3. Breznak, J. A. & Canale-Parola, E.(1972). Metabolism of Spirochaeta aurantia. II. Aerobic oxidation of carbohydrates. Arch Microbiol 83, 278–292. [Google Scholar]
  4. Breznak, J. A. & Canale-Parola, E.(1975). Morphology and physiology of Spirochaeta aurantia strains isolated from aquatic habitats. Arch Microbiol 105, 1–12.[CrossRef] [Google Scholar]
  5. Canale-Parola, E.(1973). Isolation, growth and maintenance of anaerobic free-living spirochetes. Methods Microbiol 8, 61–73. [Google Scholar]
  6. Canale-Parola, E.(1984). Genus I. Spirochaeta Ehrenberg 1835, 313AL. In Bergey's Manual of Systematic Bacteriology, vol. 1, pp. 39–46. Edited by N. R. Krieg & J. G. Holt. Baltimore: Williams & Wilkins.
  7. Canale-Parola, E.(1992). Free-living saccharolytic spirochetes: the genus Spirochaeta. In The Prokaryotes, 2nd edn, pp. 3524–3536. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  8. DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P. & Andersen, G. L.(2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with arb. Appl Environ Microbiol 72, 5069–5072.[CrossRef] [Google Scholar]
  9. Dröge, S., Fröhlich, J., Radek, R. & König, H.(2006).Spirochaeta coccoides sp. nov., a novel coccoid spirochete from the hindgut of the termite Neotermes castaneus. Appl Environ Microbiol 72, 392–397.[CrossRef] [Google Scholar]
  10. Fracek, S. P. & Stolz, J. F.(1985).Spirochaeta bajacaliforniensis sp. n. from a microbial mat community at Laguna Figueroa, Baja California Norte, Mexico. Arch Microbiol 142, 317–325.[CrossRef] [Google Scholar]
  11. Graber, J. R., Leadbetter, J. R. & Breznak, J. A.(2004). Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite hindguts. Appl Environ Microbiol 70, 1315–1320.[CrossRef] [Google Scholar]
  12. Greenberg, E. P. & Canale-Parola, E.(1976).Spirochaeta halophila sp. n., a facultative anaerobe from a high salinity pond. Arch Microbiol 110, 185–194.[CrossRef] [Google Scholar]
  13. Harwood, C. S. & Canale-Parola, E.(1983).Spirochaeta isovalerica sp. nov., a marine anaerobe that forms branched-chain fatty acids as fermentation products. Int J Syst Bacteriol 33, 573–579.[CrossRef] [Google Scholar]
  14. Hespell, R. B. & Canale-Parola, E.(1970).Spirochaeta litoralis sp. n., a strictly anaerobic marine spirochete. Arch Microbiol 74, 1–18. [Google Scholar]
  15. Hoover, R. B., Pikuta, E. V., Bej, A. K., Marsic, D., Whitman, W. B., Tang, J. & Krader, P.(2003).Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53, 815–821.[CrossRef] [Google Scholar]
  16. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  17. Magot, M., Fardeau, M.-L., Arnauld, O., Lanau, C., Ollivier, B., Thomas, P. & Patel, B. K. C.(1997).Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol Lett 155, 185–191.[CrossRef] [Google Scholar]
  18. Paster, B. J., Dewhirst, F. E., Weisburg, W. G., Tordoff, L. A., Fraser, G. J., Hespell, R. B., Stanton, T. B., Zablen, L., Mandelco, L. & Woese, C. R.(1991). Phylogenetic analysis of spirochetes. J Bacteriol 173, 6101–6109. [Google Scholar]
  19. Pernice, M., Wetzel, S., Gros, O., Boucher-Rodoni, R. & Dubilier, N.(2007). Enigmatic dual symbiosis in the excretory organ of Nautilus macromphalus (Cephalopoda: Nautiloidea). Proc Biol Sci 274, 1143–1152.[CrossRef] [Google Scholar]
  20. Ritalahti, K. M. & Löffler, F. E.(2002). Ecology and characterization of novel, free-living, non-spiral spirochetes. In Abstracts of the 102nd General Meeting of the American Society for Microbiology, Salt Lake City, UT, USA, abstract I-14. Washington, DC: American Society for Microbiology.
  21. Ritalahti, K. M. & Löffler, F. E.(2003). Non-spiral spirochetes (NSS), sticky denizens in anoxic environments. In Abstracts of the 103rd General Meeting of the American Society for Microbiology, Washington, DC, USA, abstract I-133. Washington, DC: American Society for Microbiology.
  22. Ritalahti, K. M. & Löffler, F. E.(2004). Characterization of novel free-living pleiomorphic spirochetes (FLiPS). In Abstracts of the 10th International Symposium on Microbial Ecology, Cancun, Mexico, abstract 539. Geneva: International Society for Microbial Ecology.
  23. Stamatakis, A., Ludwig, T. & Meier, H.(2005). RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21, 456–463.[CrossRef] [Google Scholar]
  24. Weber, F. H. & Greenberg, E. P.(1981). Rifampin as a selective agent for the enumeration and isolation of spirochetes from salt marsh habitats. Curr Microbiol 5, 303–306.[CrossRef] [Google Scholar]
  25. Wertz, J. T. & Breznak, J. A.(2007).Stenoxybacter acetivorans gen. nov., sp. nov., an acetate-oxidizing obligate microaerophile among diverse O2-consuming bacteria from termite guts. Appl Environ Microbiol 73, 6819–6828.[CrossRef] [Google Scholar]
  26. Zechmeister, L.(1962).Cis-trans Isomeric Carotenoids, Vitamins A and Arylpolyenes. Vienna: Springer.
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.2008/001263-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/001263-0
Loading

Data & Media loading...

Supplements

vol. , part 12, pp. 2762 - 2768

Dataset used for the construction of the phylogenetic tree based on 16S rRNA gene sequences. [PDF](22 KB)



PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error