1887

Abstract

Four obligately anaerobic, thermophilic, sulfate-reducing bacterial strains, designated TGE-P1, TDV, TGL-LS1 and TSL-P1, were isolated from thermophilic (operated at 55 °C) methanogenic sludges from waste and wastewater treatment. The optimum temperature for growth of all the strains was in the range 55–60 °C. The four strains grew by reduction of sulfate with a limited range of electron donors, such as hydrogen, formate, pyruvate and lactate. In co-culture with the hydrogenotrophic methanogen ΔH, strains TGE-P1, TGL-LS1 and TSL-P1 were able to utilize lactate syntrophically for growth. The DNA G+C contents of all the strains were in the range 34–35 mol%. The major cellular fatty acids of the strains were iso-C, iso-C, C and anteiso-C. Phylogenetic analyses based on 16S rRNA gene sequences revealed that the strains belong to the clade of the phylum ‘’. On the basis of their physiological, chemotaxonomic and genetic properties, strains TGL-LS1 (=JCM 13214) and TSL-P1 (=JCM 13215) were classified as strains of . Two novel species of the genus are proposed to accommodate the other two isolates: sp. nov. (type strain TGE-P1 =JCM 13213 =DSM 17283) and sp. nov. (type strain TDV =JCM 13216 =DSM 17215). To examine the ecological aspects of -type cells in the sludge from which the strains were originally isolated, an oligonucleotide probe targeting 16S rRNA of all species was designed and applied to thin sections of thermophilic sludge granules. Fluorescence hybridization using the probe revealed rod- or vibrio-shaped cells as a significant population within the sludge, indicating their important role in the original ecosystem.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/000893-0
2008-11-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/11/2541.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/000893-0&mimeType=html&fmt=ahah

References

  1. Bryant, M. P., Campbell, L. L., Reddy, C. A. & Crabill, M. R.(1977). Growth of Desulfovibrio in lactate or ethanol media low in sulfate in association with H2-utilizing methanogenic bacteria. Appl Environ Microbiol 33, 1162–1169. [Google Scholar]
  2. Doetsch, R. N.(1981). Determinative methods of light microscopy. In Manual of Methods for General Bacteriology, pp. 21–33. Edited by P. Gerhardt, R. G. E. Murray, R. N. Costilow, E. W. Nester, W. A. Wood, N. R. Krieg & G. B. Phillips. Washington, DC: American Society for Microbiology.
  3. Felsenstein, J.(1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef] [Google Scholar]
  4. Garrity, G. M. & Holt, J. G.(2001). Phylum BVIII. Nitrospirae phy. nov. In Bergey's Manual of Systematic Bacteriology, pp. 451–464. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  5. Hanada, S., Takaichi, S., Matsuura, K. & Nakamura, K.(2002).Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52, 187–193. [Google Scholar]
  6. Haouari, O., Fardeau, M. L., Cayol, J. L., Fauque, G., Casiot, C., Elbaz-Poulichet, F., Hamdi, M. & Ollivier, B.(2008).Thermodesulfovibrio hydrogeniphilus sp. nov., a new thermophilic sulphate-reducing bacterium isolated from a Tunisian hot spring. Syst Appl Microbiol 31, 38–42.[CrossRef] [Google Scholar]
  7. Henry, E. A., Devereux, R., Maki, J. S., Gilmour, C. C., Woese, C. R., Mandelco, L., Schauder, R., Remsen, C. C. & Mitchell, R.(1994). Characterization of a new thermophilic sulfate-reducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch Microbiol 161, 62–69.[CrossRef] [Google Scholar]
  8. Hiraishi, A.(1992). Direct automated sequencing of 16S rDNA amplified by polymerase chain reaction from bacterial cultures without DNA purification. Lett Appl Microbiol 15, 210–213.[CrossRef] [Google Scholar]
  9. Imachi, H., Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H.(2000). Cultivation and in situ detection of a thermophilic bacterium capable of oxidizing propionate in syntrophic association with hydrogenotrophic methanogens in a thermophilic methanogenic granular sludge. Appl Environ Microbiol 66, 3608–3615.[CrossRef] [Google Scholar]
  10. Kamagata, Y. & Mikami, E.(1991). Isolation and characterization of a novel thermophilic Methanosaeta strain. Int J Syst Bacteriol 41, 191–196.[CrossRef] [Google Scholar]
  11. Klemps, R., Cypionka, H., Widdel, F. & Pfennig, N.(1985). Growth with hydrogen, and further physiological characteristics of Desulfotomaculum species. Arch Microbiol 143, 203–208.[CrossRef] [Google Scholar]
  12. Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhukumar, Buchner, A., Lai, T., Steppi, S. & other authors(2004).arb: a software environment for sequence data. Nucleic Acids Res 32, 1363–1371.[CrossRef] [Google Scholar]
  13. Pfennig, N. & Wagener, S.(1986). An improved method of preparing wet mounts for photomicrographs of microorganisms. J Microbiol Methods 4, 303–306.[CrossRef] [Google Scholar]
  14. Plugge, C. M., Balk, M. & Stams, A. J. M.(2002).Desulfotomaculum thermobenzoicum subsp. thermosyntrophicum subsp. nov., a thermophilic, syntrophic, propionate-oxidizing, spore-forming bacterium. Int J Syst Evol Microbiol 52, 391–399. [Google Scholar]
  15. Saitou, N. & Nei, M.(1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425. [Google Scholar]
  16. Sekiguchi, Y., Kamagata, Y., Syutsubo, K., Ohashi, A., Harada, H. & Nakamura, K.(1998). Phylogenetic diversity of mesophilic and thermophilic granular sludges determined by 16S rRNA gene analysis. Microbiology 144, 2655–2665.[CrossRef] [Google Scholar]
  17. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H.(1999). Fluorescence in situ hybridization using 16S rRNA-targeted oligonucleotides reveals localization of methanogens and selected uncultured bacteria in mesophilic and thermophilic sludge granules. Appl Environ Microbiol 65, 1280–1288. [Google Scholar]
  18. Sekiguchi, Y., Kamagata, Y., Nakamura, K., Ohashi, A. & Harada, H.(2000).Syntrophothermus lipocalidus gen. nov., sp. nov., a novel thermophilic, syntrophic, fatty-acid-oxidizing anaerobe which utilizes isobutyrate. Int J Syst Evol Microbiol 50, 771–779.[CrossRef] [Google Scholar]
  19. Sekiguchi, Y., Kamagata, Y., Ohashi, A. & Harada, H.(2002). Molecular and conventional analyses of microbial diversity in mesophilic and thermophilic upflow anaerobic sludge blanket granular sludges. Water Sci Technol 45, (10). 19–25. [Google Scholar]
  20. Shintani, T., Liu, W. T., Hanada, S., Kamagata, Y., Miyaoka, S., Suzuki, T. & Nakamura, K.(2000).Micropruina glycogenica gen. nov., sp. nov., a new Gram-positive glycogen-accumulating bacterium isolated from activated sludge. Int J Syst Evol Microbiol 50, 201–207.[CrossRef] [Google Scholar]
  21. Sonne-Hansen, J. & Ahring, B. K.(1999).Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst Appl Microbiol 22, 559–564.[CrossRef] [Google Scholar]
  22. Stackebrandt, E. & Goebel, B. M.(1994). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef] [Google Scholar]
  23. Stahl, D. A., Flesher, B., Mansfield, H. R. & Montgomery, L.(1988). Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology. Appl Environ Microbiol 54, 1079–1084. [Google Scholar]
  24. Stams, A. J. M. & Zehnder, A. J. B.(1990). Ecological impact of syntrophic alcohol and fatty acid oxidation. In Microbiology and Biochemistry of Strict Anaerobes Involved in Interspecies Hydrogen Transfer, pp. 87–98. Edited by J.-P. Belaich, M. Bruschi & J.-L. Garcia. New York: Plenum.
  25. Uemura, S. & Harada, H.(1993). Microbial characteristics of methanogenic sludge consortia developed in thermophilic UASB reactors. Appl Microbiol Biotechnol 39, 654–660.[CrossRef] [Google Scholar]
  26. Wayne, L. G., Brenner, D. J., Colwell, R. R., Grimont, P. A. D., Kandler, O., Krichevsky, M. I., Moore, L. H., Moore, W. E. C., Murray, R. G. E. & other authors(1987). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef] [Google Scholar]
  27. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J.(1991). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703. [Google Scholar]
  28. Widdel, F. & Pfennig, N.(1981). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129, 395–400.[CrossRef] [Google Scholar]
  29. Yamada, T., Sekiguchi, Y., Imachi, H., Kamagata, Y., Ohashi, A. & Harada, H.(2005). Diversity, localization, and physiological properties of filamentous microbes belonging to Chloroflexi subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71, 7493–7503.[CrossRef] [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.2008/000893-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/000893-0
Loading

Data & Media loading...

Supplements

[PDF file of Supplementary Figs S1-S3 and Supplementary Table S1](677 KB)

PDF

[Higher-resolution PDF file of Supplementary Fig. S3](2585 KB) (Note: this file may take some time to download)

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error