1887

Abstract

Three Gram-negative, aerobic, motile, halophilic, rod-shaped strains (CN46, CN71 and CN74) were isolated from sediment of the East China Sea and subjected to a polyphasic taxonomic study. Strains CN46 and CN71 had identical 16S rRNA gene sequences and phenotypic characteristics. Strain CN46 was moderately halophilic. Growth of strain CN46 was observed between 0.5 and 10.0 % (w/v) NaCl (optimal growth at 3.0–5.0 %) and between pH 6.5 and 9.0. Strain CN74 grew over a wider range of pH (pH 6.0–9.5); the optimum NaCl concentration for growth was 1.0–3.0 %. The major fatty acids of strain CN46 were C 9, C and C, whereas strain CN74 contained C, C 9, C 9 and C. The DNA G+C contents of the three isolates were between 58.0 and 58.9 mol%. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains CN46, CN71 and CN74 grouped together within the cluster of species. 16S rRNA gene sequence similarities of the three strains with the type strains of species ranged from 94.0 to 97.1 %. The DNA–DNA hybridization values of strain CN74 with strains CN46 and CN71 were 35.0 and 36.0 %, respectively. Levels of DNA–DNA relatedness between strains CN46 and CN74 and CGMCC 1.6775, CGMCC 1.6294 and DSM 17924 were 15.3–45.2 %. The results of DNA–DNA hybridizations, fatty acid analysis, and physiological and biochemical tests allowed genotypic and phenotypic differentiation of the isolates from closely related species. Two novel species are proposed, named sp. nov. (type strain CN46 =CGMCC 1.7059 =JCM 15154) and sp. nov. (type strain CN74 =CGMCC 1.7061 =JCM 15156).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.2008/000786-0
2008-12-01
2020-01-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/58/12/2885.html?itemId=/content/journal/ijsem/10.1099/ijs.0.2008/000786-0&mimeType=html&fmt=ahah

References

  1. Antunes, A., França, L., Rainey, F. A., Huber, R., Nobre, M. F., Edwards, K. J. & da Costa, M. S. ( 2007; ). Marinobacter salsuginis sp. nov., isolated from the brine–seawater interface of the Shaban Deep, Red Sea. Int J Syst Evol Microbiol 57, 1035–1040.[CrossRef]
    [Google Scholar]
  2. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  3. Euzéby, J. P. ( 1997; ). List of Bacterial Names with Standing in Nomenclature: a folder available on the Internet. Int J Syst Bacteriol 47, 590–592. http://www.bacterio.cict.fr.[CrossRef]
    [Google Scholar]
  4. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  5. Fitch, W. M. ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20, 406–416.[CrossRef]
    [Google Scholar]
  6. Gauthier, M. J., Lafay, B., Christen, R., Fernandez, L., Acquaviva, M., Bonin, P. & Bertrand, J. C. ( 1992; ). Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42, 568–576.[CrossRef]
    [Google Scholar]
  7. Gorshkova, N. M., Ivanova, E. P., Sergeev, A. F., Zhukova, N. V., Alexeeva, Y., Wright, J. P., Nicolau, D. V., Mikhailov, V. V. & Christen, R. ( 2003; ). Marinobacter excellens sp. nov., isolated from sediments of the Sea of Japan. Int J Syst Evol Microbiol 53, 2073–2078.[CrossRef]
    [Google Scholar]
  8. Green, D. H., Bowman, J. P., Smith, E. A., Gutierrez, T. & Bolch, C. J. S. ( 2006; ). Marinobacter algicola sp. nov., isolated from laboratory cultures of paralytic shellfish toxin-producing dinoflagellates. Int J Syst Evol Microbiol 56, 523–527.[CrossRef]
    [Google Scholar]
  9. Gu, J., Cai, H., Yu, S.-L., Qu, R., Yin, B., Guo, Y.-F., Zhao, J.-Y. & Wu, X.-L. ( 2007; ). Marinobacter gudaonensis sp. nov., isolated from an oil-polluted saline soil in a Chinese oilfield. Int J Syst Evol Microbiol 57, 250–254.[CrossRef]
    [Google Scholar]
  10. Guo, B., Gu, J., Ye, Y.-G., Tang, Y.-Q., Kida, K. & Wu, X.-L. ( 2007; ). Marinobacter segnicrescens sp. nov., a moderate halophile isolated from benthic sediment of the South China Sea. Int J Syst Evol Microbiol 57, 1970–1974.[CrossRef]
    [Google Scholar]
  11. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  12. Kim, B. Y., Weon, H. Y., Yoo, S. H., Kim, J. S., Kwon, S. W., Stackebrandt, E. & Go, S. J. ( 2006; ). Marinobacter koreensis sp. nov., isolated from sea sand in Korea. Int J Syst Evol Microbiol 56, 2653–2656.[CrossRef]
    [Google Scholar]
  13. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  14. Kumar, S., Tamura, K. & Nei, M. ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5, 150–163.[CrossRef]
    [Google Scholar]
  15. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  16. Liebgott, P. P., Casalot, L., Paillard, S., Lorquin, J. & Labat, M. ( 2006; ). Marinobacter vinifirmus sp. nov., a moderately halophilic bacterium isolated from a wine-barrel-decalcification wastewater. Int J Syst Evol Microbiol 56, 2511–2516.[CrossRef]
    [Google Scholar]
  17. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  18. Martín, S., Márquez, M. C., Sánchez-Porro, C., Mellado, E., Arahal, D. R. & Ventosa, A. ( 2003; ). Marinobacter lipolyticus sp. nov., a novel moderate halophile with lipolytic activity. Int J Syst Evol Microbiol 53, 1383–1387.[CrossRef]
    [Google Scholar]
  19. Mata, J. A., Martínez-Cánovas, J., Quesada, E. & Béjar, V. ( 2002; ). A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25, 360–375.[CrossRef]
    [Google Scholar]
  20. Romanenko, L. A., Schumann, P., Rohde, M., Zhukova, N. V., Mikhailov, V. V. & Stackebrandt, E. ( 2005; ). Marinobacter bryozoorum sp. nov. and Marinobacter sediminum sp. nov., novel bacteria from the marine environment. Int J Syst Evol Microbiol 55, 143–148.[CrossRef]
    [Google Scholar]
  21. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  22. Shieh, W. Y., Jean, W. D., Lin, Y. T. & Tseng, M. ( 2003; ). Marinobacter lutaoensis sp. nov., a thermotolerant marine bacterium isolated from a coastal hot spring in Lutao, Taiwan. Can J Microbiol 49, 244–252.[CrossRef]
    [Google Scholar]
  23. Shivaji, S., Gupta, P., Chaturvedi, P., Suresh, K. & Delille, D. ( 2005; ). Marinobacter maritimus sp. nov., a psychrotolerant strain isolated from sea water off the subantarctic Kerguelen islands. Int J Syst Evol Microbiol 55, 1453–1456.[CrossRef]
    [Google Scholar]
  24. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  25. Ventosa, A., Quesada, E., Rodriguez-Valera, F., Ruiz-Berraquero, F. & Ramos-Cormenzana, A. ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128, 1959–1968.
    [Google Scholar]
  26. Xu, X.-W., Wu, Y.-H., Zhou, Z., Wang, C.-S., Zhou, Y.-G., Zhang, H.-B., Wang, Y. & Wu, M. ( 2007; ). Halomonas saccharevitans sp. nov., Halomonas arcis sp. nov. and Halomonas subterranea sp. nov., halophilic bacteria isolated from hypersaline environments of China. Int J Syst Evol Microbiol 57, 1619–1624.[CrossRef]
    [Google Scholar]
  27. Xu, X.-W., Wu, Y.-H., Wang, C.-S., Yang, J.-Y., Oren, A. & Wu, M. ( 2008; ). Marinobacter pelagius sp. nov., a moderately halophilic bacterium. Int J Syst Evol Microbiol 58, 637–640.[CrossRef]
    [Google Scholar]
  28. Yoon, J. H., Shin, D. Y., Kim, I. G., Kang, K. H. & Park, Y. H. ( 2003; ). Marinobacter litoralis sp. nov., a moderately halophilic bacterium isolated from sea water from the East Sea in Korea. Int J Syst Evol Microbiol 53, 563–568.[CrossRef]
    [Google Scholar]
  29. Yoon, J. H., Yeo, S. H., Kim, I. G. & Oh, T. K. ( 2004; ). Marinobacter flavimaris sp. nov. and Marinobacter daepoensis sp. nov., slightly halophilic organisms isolated from sea water of the Yellow Sea in Korea. Int J Syst Evol Microbiol 54, 1799–1803.[CrossRef]
    [Google Scholar]
  30. ZoBell, C. E. ( 1941; ). Studies on marine bacteria. I. The cultural requirements of heterotrophic aerobes. J Mar Res 4, 42–75.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.2008/000786-0
Loading
/content/journal/ijsem/10.1099/ijs.0.2008/000786-0
Loading

Data & Media loading...

Supplements

Transmission electron photomicrographs of cells of strains CN46 (left) and CN74 (right) grown on HM agar. Bars, 0.5 µm.

IMAGE

Transmission electron photomicrographs of cells of strains CN46 (left) and CN74 (right) grown on HM agar. Bars, 0.5 µm.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error